10.

11

12,

13.

A hot plate (T m x 1 m), at 150°C is to be cooled by attaching on its surface, 10,000 number of cylindrical, pin
fins of each, 3 mm diameter and 3 cm long. Surrounding air is at 25°C. Heat transfer coefficient between the fin
surfaces and the surroundings is 30 W/(m*C). Determine:

(i) overall surface effectiveness

(ii) heat transfer rate, with the fins in place
(iii} heat transfer rate from the plate, if there were no fins

(iv} decrease in thermal resistance due to attaching the fins.
An aluminium fins are fixed on one side (size: 1 m x 1 m}, of an electronic device to increase the heat
dissipation. Fins are of rectangular cross section, 0.2 cm thick and 3 cm long. There are 100 fins per metre.
Convection heat transfer coefficient for both the plate and the fins is 30 W/(m?K). Determine the percentage
increase in the rate of heat transfer due to attaching the fins.
An iron bar, 15 mm in diameter, spans the distance between two plates, 50 cm apart. Air at 25°C flows in the
space between the plates resulting in heat transfer coefficient of 15 W/(m’K}. Calculate the heat transfer and
temperature at the middle of the bar, if the plates are maintained at 125°C each. For iron, k = 45 W/(mK)}.
Twa ends of a.6 mm diameter copper rod (U-shaped) having k = 330 W/(mK), are rigidly connected to a vertical
wall as shown in Fig. Problem 6.11. Wall temperature is constant at 100°C. Developed length of the rod is 50 cm
and is exposed to air at 30°C. Combined convective and radiative heat transfer coefficient is 30 W/ (m? K).
Calculate:

(i) the temperature at the centre of the rod

(i1} net heat transfer from the rod to air.

1 D =0.006 m

T, =100°C

h =30 Wi(m°C)

T,=100C~_§ /VT;, =30°C

/

\

0.25m

FIGURE Problem 4.11  U-shaped rod, both ends fixed to a wall

A steel rod (k = 55 W/(mK)}, of length 50 cm, diameter 2.5 cm, has its two ends maintained at 150°C and 60°C.
Ambient air, to which heat is dissipated by the rod, is at 25°C and the heat transfer coefficient is 20 W/ (m? K).
Determine:

(i) minimum temperature in the rod

(if) temperature at the mid-point of the rod, and
{(iii) heat transfer rates from the left and right ends.
A Hg-thermometer placed in a well filled with oil, is required to measure the temperature of compressed air
flowing in a pipe. The well is 14 cm long and is made of stee! 1.5 mm thick. The temperature indicated by the
thermometer is 100°C. The pipe wall temperature is 50°C. The film coefficient cutside the wall is 30W/ {(m°C).
Estimate the % error in measurement of temperature of air. k for steel = 40W /(mC}).
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CHAPTER

Transient Heat
Conduction

7.1 Introduction

In chapter 3, we derived the general differential equation for conduction and then applied it to problems of
increasing complexity, e.g. first, we studied heat transfer in simple geometries without heat generation and then
we studied heat transfer when there was internal heat generation. In all these problems, steady state heat transfer
was assumed, i.e. the temperature within the solid was only a function of position and did not depend on time,
ie. mathematically, T = T{(x, ¥, z). However, all the process equipments used in engineering practice, such as
boilers, heat exchangers, regenerators, etc. have to pass through an unsteady state in the beginning when the
process is started, and, they reach a steady state after sufficient time has elapsed. Or, as another example, a billet
being quenched in an oil bath, goes through temperature variations with both position and time before it attains
a steady state. Conduction heat transfer in such an unsteady state is known as transient heat conduction or,
unsteady state conduction, or time dependent conduction. Obviously, in transient conduction, temperature
depends not only on position in the solid, but alsc on time. So, mathematically, this can be written as T = T(x, y,
z, 7), where T represents the time coordinate.

Naturally, solutions for transient conduction problems are a little more complicated compared to steady
state analysis, since now, an additional parameter, namely time (7) is involved.

Typical examples of transient conduction occur in:

(i) heat exchangers

(ii) boiler tubes

(iii) cooling of cylinder heads in 1.C. engines

(iv) heat treatment of engineering compenents and quenching of ingots
{v) heating of electric irons

(vi) heating and cooling of buildings

(vii) freezing of foods, etc.

Two types of transient conduction may be identified:

(a) periodic heat flow problems, where the temperatures vary on a regular, periodic basis, e.g. in 1.C. engine
cylinders, alternate heating and cooling of earth during a 24 hr cycle (by sun} etc.
{b) non-periodic heat flow problems, where temperature varies in a non-linear manner with time.

To solve a given one-dimensional, transient conduction problem, one could start with one of the relevant
general differential equations discussed in chapter 3 and by solving it in conjunction with appropriate boundary
conditions, and get the temperature distribution as a function of position and time. For exampie, for one-
dimensional conduction, in Cartesian coordinates, we have:

AT 1 4T

Rt -without heat gemeration
dx? @ dr g )



2
and, gx—z + ng = é 3—: (with heat generation.)

However, there is a set of problems encountered in practice, where the temperature gradients within the
solid are very small, (i.e. the internal resistance to conduction is negligible) which can be solved simply by
applying the energy balance principle. Consider for example, a small body made of, say, copper, at a high
temperature, being quenched in a medium like oil. Then, the body loses heat to the medium. Heat flows by
conduction from within the body to the surface and then, by convection to the medium. When the body is very
small or when the thermal conductivity of the material of the body is very large, temperature gradients within
the body will be very small and may be neglected. In such a case, temperature within the body is only a function
of time and is independent of spatial coordinates, i.e. the whole body acts as lump and temperatures of all points
within the body decrease (or increase if the object is being heated) uniformly en-mass. Heat transfer process from
the body, in this case, is controlled by the convection resistance at the surface rather than by the conduction
resistance in the solid. Such an analysis, where the internal resistance of the body for heat conduction is
negligible and the whole body may be treated as a lump as far as temperature increase or decrease is concerned,
is known as lumped system analysis.

In this chapter, first, we shall study the lumped system analysis; then, we shall present analytical and chart
solutions for some of the practically important transient conduction problems for the cases of a large slab, long
cylinder, sphere and a semi-inifinite medium. Finally, product solution method of solving multidimensional
transient conduction problems will be explained.

7.2 Lumped System Analysis (Newtonian Heating or Cooling)

As mentioned above, in lumped system analysis, the internal conduction resistance of the body to heat flow (i.e.
L/{k.A)) is negligible compared to the convective resistance (i.e. 1/(h.A)) at the surface. So, the temperature of
the body, no doubt, varies with time, but at any given instant, the temperature within the body is uniform and is
independent of position, ie. T = T(7) only. Practical exam-
ples of such cases are: heat treatment of small metal pieces,
measurement of temperature with a thermecouple or ther-
mometer, etc., where the internal resistance of the object for h
heat conduction may be considered as negligible. ( '

A

Analysis:
Consider a solid body of arbitrary shape, volume V, mass m,
density p, surface area A, and specific heat C,. See Fig. 7.1. P
To start with, at 7= 0, let the temperature throughout the Q=hA (T,~ T(1)) o
body be uniferm at T = T;. At the instant 7 = 0, let the body )
be suddenly placed in a medium at a temperature of T, as FIGURE 7.1 Lumped system analysis
shown. For the sake of analysis, let us assume that T, > T;
however, same analysis is valid for T, < T; too. Then, heat will be fransferred from the medium to the body and
the temperature of the body will increase with time. Let the temperature of the body rise by a differential amount
dT in a differential time interval d7, thus increasing the internal energy of the solid.

Writing an energy balance for this situation:

Amount of heat transferred into the body in time interval dr =

Increase in the internal energy of the body in time interval dr

ie. h-A(T,-T()-dr=m C,-dT = pCp-V-dT .(7.1)
since m=pV
Now, since T, is a constant, we can write:
dT = d(T(3) - T,)
Therefore,
HT{n)-T,) —hA
T(1)-T, pCV

-dr (7.2)
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Integrating between =0 (ie. T = T)) and any 7, (i.e. T = T(7),
ln{(m) —Ta)) kAT

T-T, | pCV
ie -1, exp ( —h~A-rJ {73)
T, -T, pCpV
Now, let:
GV
A

where, f is known as thermal time constant and has units of time.

Therefore, Eq. 7.3 is writfen as:

M = exp (—_f] A7
T -T, ¢
Now denoting 6 = (T(z7) — T,), we write Eq. 7.4 compactly as:
S T0-h o [;TJ A75)
6 T, -T, f

Eq. 7.5 gives the temperature distribution in a solid as a function of time, when the internal resistance of the
solid for conduction is negligible compared to the convective resistance at its surface.
Eq. 7.5 is represented graphically in Fig. 7.2.
From Eq. 7.5 and Fig 7.2, we note:
(i) temperature distribution is exponential, i.e. temperature changes rapidly initially and approaches that of
the medium exponentially.

(i) either the time required by the body to reach a certain temperature or the temperature attained by the
body after a certain time interval, can be found out from Eq. 7.5.

(i} larger the value of time constant t, longer is the time required for the body to reach a particular
temperature. :

{iv) time required for the body to attain 36.8% of the applied temperature difference is indicated in the Fig.
7.2(a). This is known as one time period and is of importance in connection with measurement of
temperatures with thermocouples. Larger the value of time constant, larger is the time period. We shall
comment on this later in this chapter.

0/0; A T A

IS Exponential heating

1= (pCp V)/(hA)

T, 1

0368F------2 Exponential cooling

"

FIGURE 7.2{a) Temperature varigtion with time FIGURE 7.2(b} Newtfonian heating and cooling
in a lumped system
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instantaneous heat transfer:
At any instant 7, heat transfer between the body and the environment is easily calculated since we have the
temperature distribution from Eq. 7.4:

dT
QD =m-C, d(:), w .(7.6a)
At that instant, heat transfer must also be equal to:
Qo =h-A-(T(H-T) W +(7.6b)

Total heat transfer:
Total heat transferred during 7 =0 to 7= 7, is equal to the change in internal energy of the body:

Qe = m-C{T( - T}, ] .(7.7a)
(J,e Mmay also be calculated by integrating Eq. 7.6a:
T
Qo = IOQ(r)dr,J A7.7b)

Maximum heat transferred:
When the body reaches the temperature of the environment, obviously, maximum heat has been transferred:
Qmax =M Cp' (Tu - T])! I ..(7.8)
If Q,.x is negative, it means that the body has lost heat, and if ., is positive, then body has gained heat.

7.3 Criteria for Lumped System Analysis
{Biot Number and Fourier Number)

For the simple analysis made above, we had the fundamental assumption that the internal conductive resistance
of the body was negligible as compared to the convective resistance at its surface. This was stated in a rather
qualitative way. Now, let us study the criteria required for the lumped system analysis to be applicable.

Consider a plane slab in steady state, transferring heat to a fluid

on its surface with a heat transfer coefficient of k, as shown in Bi<<1
Fig. 7.3. (The criterion arrived at is readily extended to transient Bi=1
conditions later.} Bi>> 1
Let the surface on the left be maintained at temperature T; and T,
the surface on the right is at a temperature of T; as a result of heat T, hT
being lost to a fluid at temperature T,, flowing with a heat transfer T 1 a
coefficient #. Writing an energy balance at the right hand surface,
k-A
= (= To) = AT, - T) ;z
a
Rearranging, Qoona Kl 1 » Qoo
( L ] o -
A L
- kA h-L —
;1 ]1;2 - = Beond — =Bi A7.9) d
2o (J—J Reony FIGURE 7.3(a) Biot number and
kA temperature distribution in a plane wall

The term, (#.L}/k, appearing on the RHS of Eq. 7.9 is a dimensionless number, known as Biot number.

Biot number is a measure of the temperature drop in the solid relative to the temperature drop in the con-
vective layer. It is also interpreted as the ratio of conductive resistance in the solid to the convective resistance at
its surface. This is precisely the criterion we are looking for. Note from Fig. 7.3(a) the temperature profile for Bi
<< 1. It suggests that one can assume a uniform temperature distribution within the solid if Bi << 1.

Situation during transient conduction is shown in Fig. 7.3(b). It may be observed that temperature distribu-
tion is a strong function of Biot number. For Bi << 1, temperature gradient in the solid is small and temperature
can be taken as a function of time only. Note also that for Bi >> 1, temperature drop across the solid is much
larger than that across the convective layer at the surface.

Therefore, to fix the criterion for which lumped system analysis is applicable, let us define Biot number, in
general, as follows:
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- T(x,0)= T, ~_ Tix,0) =T, ~

L] h Te /\
A

T ]
] /\
- P A N
Bi<<1 Bi=1 Bi>> 1

FIGURE 7.3(b) Biot number and transient temperature distribution in a plane wall

Bi= h'ka (7.10)

where, k is the heat transfer coefficient between the solid surface and the surroundings, k is the thermal
conductivity of the solid, and L, is a characteristic length defined as the ratio of the volume of the body to its
surface area, i.e.

L4
A

With this definition of Bi and L, for solids such as a plane slab, long cylinder and sphere, it is found that
transient temperature distribution within the solid at any instant is uniform, with the error being less than about
5%, if the following criterion is satisfied:

Bi = hTL“ <01 (711)

L=

In other words, if the conduction resistance of the body is less than 10% of the convective resistance at its
surface, the temperature distribution within the body will be uniform within an error of 5%, during transient
conditions.

L, for common shapes:
A2L

(i) Plane wall (thickness 2L): L = S = |, = half-thickness of wall
(ii) Long cylinder, radius R: [, = —E—IS—Z—E = 5
B cymnaer ' ‘" 2xRL 2
%-E—RP’ R
(iii) Sphere, radius, R: L. = ==
P 47R* 3
rr L
iv) Cube, side L: Li=—7=—
(iv) Cube, side 26
Therefore, we can write Eq. 7.3 as:
_ A
O _TO-L Tl iBi<o1 (712
0:' -7, pcp 14

Eq. 7.12 is important. its appliation to a given preblem is very simple and solution of any transient
conduction problem must begin with examining if the criterion, Bi < 0.1 is satisfied to see if Eq. 7.12 could be
applied.
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Now, the term (h-A-7)/(p- C,- V) can be written as follows:

hAT _ [ﬁ} k7 5 1= [h'l‘c)- a': = Bi-Fo ..5thce y. L,
pC,V k pC, L k 1z A
T . . .
where, Fo = —5 = Fourier number, or relative time.

‘C
Fourier number, like Biot number, is an important parameter in transient heat transfer problems. it is also
known as ‘dimensionless time’. Fourier number signifies the degree of penetration of heating or cooling effect
through a solid. For small Fo, large 7will be required to get significant temperature changes.
With the aforesaid definitions of Biot number and Fourier number, now, we can rewrite Eq. 7.12 as:
¢ T()~-T, . e
— = 8- exp(-Bi-Fo) if Bi<0.1 {713
5 = o7, - OPCBIF (7.13)
Eqg. 7.13 is plotted in Fig. 7.4 below. On the X-axis, (Bi. Fo) is plotted against 8/ ¢, on Y-axis. As expected, the
graph is a straight line, with a negative slope when the Y-axis has logarithmic scale. Remember that this graph is
for the cases where lumped system analysis is applicable, i.e. Bi < 0.1.

Transient temperature distribution
in solids, Bf < 0.1

1 I ¥
\\ +
~ -
Note: X = Bi-F,
0.1 N
exp (-X)

0.01 =

1107 ' w

0 051 15 2 25 3 35 4 45 5
X

FIGURE 7.4 Dimensionless femperature distribution in solids during transient heat transfer, (Bi < 0.1), for
jumped system analysis

7.4 Response Time of a Thermocouple
Lumped system analysis is usefully applied in the case of temperature measurement with a thermometer or a
thermocouple. Obviously, it is desirable that the thermocouple indicates the source temperature as fast as
possible. If the thermocouple is measuring changing temperatures, then also, it should follow the temperature
changes at a rate faster than the rate of temperature change. ‘Response time’ of a thermocouple is defined as the
time taken by it to reach the source temperature.

Consider Eq. 7.12:

6 _ T(z)-T, = exp Az if Bi <0.1 (7.12)
8; T, - T, GV

For rapid response, the term (hAT)/ (pCPV) should be large so that the exponential term will reach zero
faster. This means that:
(i) increase (4/V), i.e. decrease the wire diameter
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{ii) decrease density and specific heat, and
(iii) increase the value of heat transfer coefficient .

As mentioned earlier, the quantity (pC pV)/ {hi-A) is known as ‘thermal time constant’, ¢, of the measuring
system and has units of time. At 7=+, i.e. at a time interval of one time constant, we have:

T( f) — Ta
T - T

From Eq. 7.14, it is clear that after an interval of time equal to one time constant of the given temperature
measuring system, the temperature difference between the body {thermocouple) and the source would be 36.8%
of the initial temperature difference, i.e. the temperature difference would be reduced by 63.2%.

Time required by a thermocouple to attain 63.2% of the value of initial temperature difference is called its
sensitivity.

For good response, obviously, the response time of thermocouple should be low. As a thumb rule, it is
recommended that while using a thermocouple to measure temperatures, reading of the thermocouple should be
taken after a time equal to about four time periods has elapsed.
Example 7.1. A steel ball of 5 cm diameter initially at a uniform temperature of 450°C is suddenly placed in an environ-
ment at 100°C. Heat transfer coefficient h, between the steel bail and the fluid is 10 W/(mzl(). For steel, €y = 046 k]/
(kgK), p = 7800 kg/m”, k = 35 W/(mK). Calculate the time required for the ball to reach a temperature of 150°C. Also,
find the rate of cooling after 1 hr. Show graphically how the temperature of the sphere falls with time. M.U]
Sofution.
Data:

R:=25x107m  p:=7800kg/m’  C,=460]/(kgK) k:=35W/(mK) T,:=450°C T, := 100°C

=¢7' = 0.368 (7.14)

B=10W/(m’K) T:=150C A=4.2RmE V== %-E-R{ m’

First, calculate the Biot number:

4
Rkl ok (VJ h [g-(zr).m]
Bi = . =

k “k\A) k 4xR
ie. Bi: = %% (define Biot number)
ie. Bi = 2381 x 10° {Biot number.)

Since Bi < 0.1, lumped system analysis is applicable, and the temperature variation within the solid will be within
an error of 5%. Applying Eq. 7.12, we get:

Tir) — —hA.
O _TO-T oA im0 712)
8, T -T, -,V
T-T, -
ie. T—fTi = exp(Tr) where, t is the time constant.

And, time constant is given by:
PV P E
3

t= = (since for sphere, V/A = R/3)

A-h h

€,
ie. fi= ph” % (define time constant, £)
i.e. t=2990s {time constant)

Therefore, we write:
150 - 100 ( -7
——— = exp

= --—| where, ris the time required to reach 150°C
450100

2990

. ( 50 -7

ie. Inf-—|= —
350 2990
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or, 7:= - 2990 ln( >0 J s (define 1, the time required to reach 150°C)

350
ie. r=5818x 10%s {time required to reach 150°C.)
ie. r= 1616 hrs.
Rate of cooling after 1 hr.:
ie r:=3600s
From Eq. 7.12, we have:
—hA
T(z) = {(T. - Ta)-EXP[ f}”}} (define T(z))
pcpV
. dar -hA —hAT .
ie. i (T, - Ta)-[p.vfp}exp { p-cp-VJ C/s (rate of cooling}
: d .
ie. o T(r) = -0.035 C/s (rate of cooling after 1 hr.)

negative sign indicates that as time increases, temperature falls.
Note that in Mathcad, there is no need to separately differentiate and substitute the values. All that is done in one
step as shown above.
To sketch the fall in temperature of sphere with time:
Temperature as a function of time is given by Eq. 7.12:

8 _TO-L _ 0 AT iBicon 712
5 T T pe v
e (=T, + (T;- TE)-exp("h'A'fJ AA)
pc,V

We will plot Eq. A against different times, 7:
We use Mathcad to draw the graph. First, define a range variable 1, varying from 0 to say, 4 hrs, with an increment
of 0.1 hrs. Then, choose x—y graph from the graph palette, and fill up the place holders on the X-axis and Y-axis with 7
and T{?), respectively. Click anywhere outside the graph region and immediately the graph appears:
r=0,01, .., 4 (define a range variable, T varying from zero fo 4 hrs, with an increment of 0.1 hrs.)

Transient cooling of sphere-lumped system
450 v 1
400 X

350
T(t-3600) 300 tin hrs. and T{z} in deg. C

250 \

200 \

150 \\T\

100 —

o 05 1 15 2 25 3 35 4
T

FIGURE Example 7.1 Transient cooling of a sphere considered os o lumped system

Note from the Fig. 7.4 hew the cooling progresses with time. After about 4 hrs duration, the sphere approaches the
temperature of the ambient. You can also verify from the graph that the time required for the sphere to reach 150°C is
1.616 hrs, as calculated earlier.
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Bxomple 7.2, A 50 cm x 50 cm copper slab, 6 mm thick, at a uniform temperature of 350°C, suddenly has its surface
temperature lowered to 30°C. Find the time at which the slab temperature becomes 100°C. Given: p = 9000 kg/m?, ep =
0.38 k] /(kgK), k = 370 W/(mK), I = 100 W/{(m?K). Also, find out the rate of cooling after 60 seconds.

Solution.

Data:
L:=0.05m B = 0.05 m (breadth) &= 0.006 m (thickness)
k=370 W/(mK)  T;=350°C  T,:=30°C  h =100 W/(m
A=2L-Bm® V:i=LB&m
First, calculate the Biot number:
Characteristic length: L= %
ie. L =3%x10"m
. . kI,
Therefore, Biot number: Bi: = X
ie. Bi = 8,108 x 10

£ = 9000 kg/m?
) T :=100°C

¢, = 380 J/(kgK)

{define characteristic length for the plate)
(characteristic length for plate = half the thickness)
(define Biot number)

(Biof number)

Since Bi < 0.1, lumped system analysis is applicable, and the temperature variation within the solid will be within

an error of 5%. Applying Eq. 7.12, we get:

-(7.12)

{since for plate, V/A=L)

(define tHme constant, D

(time constant)

...define ¢, the time required to reach 100°C

...time required to reach 100°C,

..define T(1)

-..rate of cooling

S IO T | | AT picon
6, T-T, PGV
T- -
ie. T = exp (—r) where, f ts the time constant.
T-T, t
And, time constant is given by:
oV .
= i = Ll 'Lc
Ah k
€
ie b= .&_".LC
t
ie. t=1026s
Therefore, we write:
10-30 = exp T where, 7is the time required to reach 100°C
350--30 102.6
. 70 ] -7
ie. In[— 1=
(320 1026
A 70
or, r=-1026In| — s
320
ie. 7= 155.934 s
ie = (.043 hrs.
Rate of cooling affer 60 s:
ie. r=60s
From Eq. 7.12, we have;
—hA
(9 = [(’I} —Tﬁ)-exp[ T]+T,J
pVe,
ie. L2 =(T;-T)- heA ‘exp hAT C/s
dr Ve, PV,
. d
ie. —T(1) = -1.738 C/s
. dr

Negative sign indicates that as time increases, temperature falls.
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Note again, that in Mathcad, there is no need to separately differentiate and substitute the values. All that is done
in one step as shown above.
Exomple 7.3. A carbon steel (AISI 1010} shaft of 0.2 m diameter is heat treated in a gas-fired furnace whose gases are at
1200 K and provide a convection coefficient of 80 W/ {m?K). If the shaft enters the furnace at 300 K, how long must it
remain in the furnace to achieve a centre line temperature of 900 K? Given thermophysical properties of AISI 1010
carbon steel: p = 7854 kg/m3, k=488 W/(mK), ¢, = 559 J/(kgK).

Solufion.
Data:

R:=01m p=7854kg/m® ¢,=59)/(kgK} k=488W/mK) T;=30K T,=120K

h=80W/(m)K) T=90K A:=2zRLm* V= RELm* L= %
. R -
ie. L= 5 m (characteristic length)
ie. L, = 0.05 m (characteristic length.)
First, calculate the Biot number

. hi, .
Bi: = - (define Biot number)

ie. Bi = 0.082 (Biot nunber)

Since Bi < 0.1, lumped system analysis is applicable, and the temperature variation within the solid will be within
an error of 5%. Applying Eq. 7.12, we get:

T(H)-T, “hA-
6 _ToO-T _ o[ *A7| micon 712
8, T.-T, pCpV
ie. T-T . exp 7| where, ¢ is the time constant.
T T, r
And, time constant is given by:
pe,V  pec, R . .
b= = since for cylinder, V/A = R/2
Ak h 2 (since for cyls /A=R/D)
ie. [ = p:” % {define time constant, t)
ie. t=274399 x 10° 5 (time constant)
Therefore, we write:
2001200 _ p[ i ] where, ris the time required to reach 900 K
300 - 1200 2743599
) (300 -7
ie. In(——|= —r=
900 274399
300 , . .

or, 7:=-274399 In 00 5 (define . the time required to reach 900 K)
ie. r=3015x 1P s (time required to reach 900 K.)
ie. = 0.838 hrs.

Exemple 74, A thermocouple (TC) junction is in the form of 8 mm sphere. Properties of the material are: ¢, = 420 J/
(kgK), p = 8000 kg/m’, k = 40 W/{mK), and heat transfer coefficient, h = 45 W/(m?K). Find, if the junction is initially at
a temperature of 28°C and inserted in a stream of hot air at 300°C:

(i} the time constant of the TC

(i} The TC is taken cut from the hot air after 10 s and kept in still air at 30°C. Assuming W in air as 10 W/(mK),

find the temperature attained by the junction 15 s after removing from hot air stream. M.U]

Solution.
Data:

R=4x10%m p=8000kg/m® ¢, =420]kgk) k=d0W/ (@K T;:=28°C  T,=300C

ho=45W/(mK}) A=4-zRm’ V:= %-x-Ra, m’
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First, calculate the Biot number:

4
kL _h (VY _ h [5'(”)'R3]
Bi = T = 7[-J - ——— 2

kLA k  4mR*
Le. Bi: = I—;g {define Biot number)
ie. Bi=15x107 (Biot number)

Since Bi < 0.1, lumped system analysis is applicable, and the temperature variation within the sokid will be within
an error of 5%.
See Fig. Example 7.4 (a).

Thermocouple, D = 8 mm Time constant is given by: .

T.=28°C -,V .
j t= % = %% (since for sphere, V/A = R/3)
P ] ie. t:= p:*’ % ...define time constant, #)
]
T,=300°C &) ie. [=99556s (time constant.)
h=45 Wl(mzK) — Temperature of TC after 10s:
7:=10s (time duration for which TC is kept in

the stream at 300°C)

FIGURE Exomple 7.4 {a) Temperature meas- We use Eq. 7.12, ie.

urement, with thermocouple placed in the air 8 _ To-T, _ e kAT i Bi < 01 (712)
stream a4, T.-T, pC,V
. T-T, -r . .
Le. =exp|— | where, ! is the time constant.
T-T, t
Therefore, T:=(T;-T,)-exp (;:;J + T,°C (define temperature of TC after 10 s in the stream)
ie T = 53.994°C {temperature of TC 10 s after it is placed in the stream at 30°C)

{b) Now, this TC is removed from the stream at 300°C and placed in still air at 30°C. So, the temperature of 53.994°C
becomes initial temperature T; for this case:

ie new T T, == 53.994°C (initial temperature when the TC is placed in still air)
And, new 1 7:=15s {(duration for which TC is kept in still air}
And, new T T,:=30°C " (new temperature of ambient)
And, new h: hi=10 W/(mZK) (heat trensfer coefficient in skill air.)

See Fig. Example 7.4 (b).
And, new time constant:

& R .
Thermocouple, D = B mm  1e [:= Ly 3 (define time constant, f)
T,=53.994°C _ ' _
ie. t =448 s (time constant)
Stilt air Therefore, T: = (T; -T,}-exp (‘T’J +T,°C

..define temperature
of TC after 15 5 in still air
ie. T =353204°C {temperature of TC 15 s after it
is placed in still air at 30°C,

T,=300°C
h =10 W{m’K)

FIGURE Exomple 7.4 (b) Temperature
measurement, with thermocouple placed in 7.5 Mixed Boundary Condition

still air
In the cases studied so far, transient conduction was induced
in the solid by subjecting it to convection on all its sides.
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However, this need not be always so. Transient conditions
can also be induced in a body by having radiation on any
of its surfaces, or by subjecting any of its surfaces to
electrical heating, or by internal heat generation caused by A
flow of electric current. Heat flux

In the general case, where transient conditions are ¢, Wim®
induced in a body by the combined effect of convection, —
radiation and heat generation, the controlling differential
equation can be derived in the usual way, by writing an
energy balance on the body taken as a control volume, i.e.
net energy entering into the body results in an increase in
the internal energy of the body. However, the resulting
differential equation will be a nonlinear one, and is not
amenable to exact apalytic solution, and has to be solved
by approximate finite difference methods.

Let us analyse one particular case {which is quite
common), where one boundary surface is subjected to a
uniform heat flux and the other boundary surface is subjected to convection. See Fig. 7.5.

As shown in the Fig. 7.5, a slab of thickness L, is subjected to a uniform heat flux (W / m®) at its left face and
loses heat by convection on its right face to a fluid at a temperature T, with a heat transfer coefficient, . Then,
applying energy balance for this case, we write:

(Energy going into the slab — Energy leaving the slab) = Increase in internal energy of the slab

— Slab, Convection b, T,
Tit)

L

FIGURE 7.5 Transient conduction in a slob with
mixed boundary conditions

AT(r
ie. q-A—h-A-(T(z’)—Tﬂ)=p-Cp-A-L-IdJ
T
T . -
ie. Al BI@-T) 3 {7.15)
dr pCpl pCyL
dg  dT(r)
Substituting: 6=T(n-T, ie. — =
ubsfituting (§5] i ir it
4 - h-A
and, a= PG,
and, b= I8 (remember: A/V = 1/I)
pvC,
a6
Eq. 7.15 becomes: I +a-8-b=10 (7.16)
. . , b
Now, introduce the transformation: 8" = - — .(a)
a
d’ -
then’ __6’_ = iiﬁ
dr dr
and, substituting Eq. a in 7.16: e
CLAP A7.17)
dr
Seperating the variables and intergrating from 7= 0 to 7= 7, (and, 8" = 6§ to 6’ =8)
g ’
— = exp(-4a-t .(7.18)
7 p(-a-17)
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Substituting now for 8’ and #:

ﬂﬂ—n—ﬁj
—NE)

- 154 = exploa-n)
TimTa _(aJ

. {7.19)
b
, T(7)-T, a
ie. ———— = T+ -(1 -exp(—a- {7.20
T-T, exp(a-17) T:'_Ta( exp(-a-1) {7.20)
4 |m@-1-(2)
and, also from Eq. 7.19: r= -—.Inj— e -(7.21}
a T =T - b)
i [ a
Note that for 7= <, Eq. 7.20 reduces to:
o=T,+2-74+1 (7.22)
a h
Eq. 7.22 gives the steady state temperature in the slab.

Example 7.5. An aluminium plate (p = 2707 kg/m®, C, = 0.896 k] /(kgC), and k = 200 W/(mC)) of thickness 3 cm is at an
initial, uniform temperature of 60°C. Suddenly, it is subjected to uniform heat flux g = BO0) W/ m?, on one surface while
the other surface is exposed to an air stream at 25°C, with a heat transfer coefficient of # = 50 W/(m?C).
(i) Is lumped system analysis applicable to this case? .

(ii} If yes, plot the temperature of the plate as a function of time, and

(iii} What is the temperature of the plate in steady state?
Solution. See Fig. Example 7.5.

k = 200 WI(mC}), p = 2707 kg/m’,
C, = 896 Ji{kgK)

Heat flux Slab Convection
: : h = 50 WH{m’C)
g =8 kW/m T{1) T =98¢
a
—
- -
L=003m
Figure Example 7.5 Transient conduction in a slab with mixed boundary conditions
Data:
L:=003m p:=2707 kg/m°
h = 50 W/(m*C)

C, = 896 ]/ (kgC)
4 = 8000 W/m?
First, claculate the Biot number:

L
Bi_h'Lf_h v 7;1
Tk kl2Aa) ™ &

(definition of Biot number)
FUNDAMENTALS OF HEAT AND MASS TRANSFER
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-

ie Bi: = ?f-;- ie. Bi=375x10? _ ...Biot number
Since Bi < 0.1, lumped system analysis is applicable, and the temperature variation within the solid will be within

an error of 5%.

To plot the temperature of plate as a function of time:

Clearly, this is a case of mixed boundary conditions, wherein at the left surface there is heat input by uniform heat flux

impinging on that surface, and on the right surface, there is heat foss by convection. So, we can directly apply Eq. 7.20.

b
Teg)— z
ie. % =exp(-7) + T ET, (1 -expl—-9) {7.200
Here, a= A
pyvC,
and, b= 74 (remember: A/V =1/L)
pVvC,
N h - -y
ie. a:= ie. a=06872x10
pCL
and, b= —2 ie. b=011
pCpL
Therefore, from Eq. 7.20:
b
T() = T, + (T, - T,)-| exp(—a-1) + T a = {1—exp(-a-7)) ..define T(1)

i a

To plot T(7) against time, let us define a range variable 7, from say 0 s to 10,000 5, at an interval of 50 s. Then, select
the x—y plot from the graph palette, and fill up the place holders on the x-axis and y-axis with 7and T(%), respectively.
Click anywhere outside the graph and immediately the graph appears: See Fig. Ex. 7.5(b)

r:=0, 50, .., 10,000 (define a range variable T, such that inifial value = 0,
next value = 50 and last value = 1000 s.)

Transient conductance in a plate (mixed B.C.)
200 I
190
180

170 /

160 4

150 /’

140 /

T(r) 138 / 1 In seconds, and T(1) in deg.c
110 //
100
90

70
60
50

0 2000 4000 6000 8000 1x 10
T

Figure Example 7.5(b)
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Temperature of plate in steady state:
We directly use Eq. 7.22 for 7= o, Le. steady state condition:

iLe. Toteady = Ts + -g- {7.22)
Le. Tsieady = 185°C (steady state temperature of plate.)
Note from the above graph, that at large 7 (= beyond about 8,000 s}, the temperature of the plate, indeed, tends to
a value of 185°C.
Example 7.6. A household electric iron has an aluminium base (p = 2700 kg/ m’, C, = 0.896 k]/ (kgC), and k = 200 W/
(mC)), and weighs 1.5 kg. Total area of iron is 0.06 m” and it is heated with a 500 W heating element. Initially, the iron
is at ambient temp. of 25°C. How long will it take for the iron to reach 110°C once it is switched on? Take heat transfer
coefficient between iron and the ambient air as 15 W/ (m’K).
Solution.
Data:
A=006m’  p:=2700 kg/m®  C,:=896]/(kgl) k= 200W/(mC)  T;:=25°C  T,:= 25°C
hi=15W/mC)  T:=110°C M:=15kg Q:=500W
First, calculate the Biot number:

vieM e vosssex 107 m3 (volume of iron)
]
Bi = hTL‘ = %(%) (definition of Biot number)
M
. hLp . . . .
Bi = % T (sintce Volume of iron = Mass/density)
ie. Bi = 6944 x 107 (Biot number.)

Since Bi < 0.1, lumped system analysis is applicable, and the temperature variation within the solid will be within
an error of 5%.

Now, writing the energy balance for the iron at any time 7,
Rate of total heat generated -- Rate of heat lost by convection = Rate of increase of internal energy

ie. Q-hAA(T(H - T) = pVC, An@) {a)
ar
e, arg [ hATO-T) _Q ~(b)
: dr pv-C, pV-C,
N . dé  dT{r)
Substituting: f=Tn-T, ie. — =%
ubstituting (0 . le ir 17
and, let: a= h-A
pVC,
and, b=
pVvC,
Eq. b becomes: ? +a-8-b=0 .(c)
T

Note that Eq. c is the same as Eq. 7.16, derived earlier. And, the solution for 7 is obtained as Eq. 7.21, with the
definition of ‘2" and ‘b’ as follows:

a= A e 4= 669 x 107
pvC,
and, b= Q ie. b =0372
pVvC,
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| T
And, = —:In -——‘; : : .A7.21)
# Tt - Tr: -
a
ie. T=1247975s ...time required for iron to reach 110°C.

7.6 One-dimensional Transient Conduction in Large Plane Walls, Long
Cylinders and Spheres when Biot Number > 0.1

There are many situations in practice, where the temperature gradient in the solid is not negligible (i.e. Bi > 0.1)
and the lumped system analysis is not applicable. In such situations, we start with the general differential
equation for time dependent, one-dimensional conduction in the appropriate coordinate system and solve it in
conjunction with the boundary conditions.

In this section, we shall analyse one-dimensional transient conduction in large plane walls, long cylinders
and spheres when Bi > 0.1,

7.6.1 One Term Approximation Solutions
Fig. 7.6 shows schematic diagram and coordinate systems for a large, plane slab, long cylinder and a sphere.

T=T,atz=0 /%T,at'ﬁﬂ
Convection
h T,
L_ &/
X r

(a) Large, plane slab (b) Long cylinder (c} Sphere

T=Tatt=0

Convection h, T, Convecti
nvection

h T,

FIGURE 7.6 One-dimensiona! transient conduction in simple geometries

Consider a plane slab of thickness 2L, shown in Fig. 7.6(a) above. Initially, i.e. at 7= 0, the slab is at an
uniform temperature, T;. Suddenly, at 7= 0, both the surfaces of the slab are subjected to convection heat transfer
with an ambient at temperature T,, with a heat transfer coefficient of b, as shown. Since there is geometrical and
thermal symmetry, we need to consider only half the slab, and that is the reason why we chose the origin of the
coordinate system on the mid-plane. Then, we can write the mathematical formulation of the problem for plane
slab as follows:

2
1
d—’g =—-£ in0b<x<L,forz>0 ..(7.23, a)
dx a dr
d—T =0 atx=0,forr>0 (723, )
dx
dT ‘
—k-d— =h(T-T,) atx=L, fort>0 LA{7.23, ¢)
x
T=T; for r=0,in0<x <L ' (723, &)

The solution of the above problem, however, is rather involved and consists of infinite series. So, it is more
convenient to present the solution either in tabular form or charts.
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For this purpose, we define the following dimensionless parameters:
(i) Dimensionless temperature:

o, B = T(x, 1) - T,
T -T,
(ii) Dimensionless distance from the centre:
x=2
L
(iii} Dimensionless heat transfer coefficient:
. kL
Bi = T (Biot number)
(iv) Dimensionless time:
aT
F, = L_2 (Fourier number)

Non-dimensionalisation of the results with the above-mentioned dimensionless numbers enables us to
present the results practically over a wide range of operating parameters, either in tabular or graphical forms.

To deal with a long cylinder or a sphere, we do exactly what we did with the plane slab, i.e. start with the
appropriate differential equation for one-dimensional, time dependent conduction in cylindrical or spherical
coordinates. Boundary conditions will be the same as in Eq. 4.23 except that x is replaced by r and L is replaced
by R. Again, results are non-dimensionalised with the dimensionless parameters as mentioned above; however,
note one important difference in defining Biot number now, while using the tabular or chart selutions:

Characteristic length in Biot number is taken as half-thickness L for a plane wall, Radius R for a long
cylinder and sphere instead of being calculated as V/A, as done in lumped system analysis.

For all these three geometries, as mentioned earlier, the solution involves infinite series, which are difficult
to deal with. However, it is observed that for Fo > 0.2, considering only the first term of the series and neglecting
other terms, involves an error of less than 2%. Generally, we are interested in times, Fo > (.2. So, it becomes very
useful and convenient to use one term approximation solution, for all these three cases, as follows:

Plane wall: Hx, 1) = I%ﬁ);—n = A 8--/121'1:0- cos(ilil{J ..Fo > 0.2 ..{7.24, a)
17 fa
_ 2 .
Long cylinder: B(x, 7) = rna-T, = A, e_i"Fo-]U(M) Fo>02 ..(7.24, b)
T.-T, R
sin(fl—li]
Sphere: &(x, 7y = Tro-T, =A e_’lz"pﬂ- _\R) .Fo>0.2 -(7.24, ¢)
P
T-T, ﬁi
R

In the above equations, A, and 4, are functions of Biot number only.
A; and A are calculated from the following relations:
For Plane wall:
Ay-tan(dy) = Bi
4‘5i.ﬂ(ﬁ.])
A= -
2:(Aq) +sin[2:(47)]

For Long cylinder:

N4y Bi
Jal41)
2-11{41)

1

T LAUo(A) + (h(A)]
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For Sphere:
1- Ay cot{4,) = Bi
) 4{sin(4y) _ (41)-cos (41)]
P24y - sinf24y)]

Values of A, and 4, are given in Table 7.1. (See Appendix at the end of this chapter for Mathcad functions to
calculate these parameters). Function ], is the zeroth order Bessel function of the first kind and |, is the first order
Bessel function of the first kind. Values of f; and J; can be read from Table 7.2. (Obtained directly from Mathcad).

Now, at the centre of a plane wall, cylinder and sphere, we have the condition x = 0 ot # = 0. Then, noting
that cos(0) = 1, J(®) = 1, and limit of sin(x)/x is also 1, Eq. 7.24 becomes:
at the centre of plane wall, cylinder and sphere:

Centre of plane wail: 8, = L-1% _ Ay e_'ﬁh -{7.25, a)
(x=0) L-T,

_ 2
Centre of long cylinder: By = h-T = A, e~hfe .(7.25, b)
(r=0) T - T,
Centre of sphere: G = Lol = A 8_12‘ o .(7.25, ¢)
(r =0} T-T,

Therefore, first step in the solution is to calculate the Biot number; once the Biot number is known, constants
A, and 4, are found out from Tables 7.1 and 7.2, and then use relations given in Egs. 7.24 and 7.25 to calculate the
temperature at any desired location.

The one-term solutions are presented in chart form in the next section. But, generally, it is difficult to read
charts accurately. So, relations given in Eqgs. 7.24 and 7.25 along with Tables 7.1 and 7.2, should be preferred to
the charts.

Calculation of amount of heat transferred, (:
Many times, we need to calculate the amount of heat lost (or gained) by the body, J, during the time interval 7=
0to 7= 7 ie. from the beginning up to a given time. Again, we non-dimensionalise {J by dividing it by Q.. the
maximum possible heat transfer. Obviously, maximum amount of heat has been transferred when the body has
" reached equilibrium with the ambient, i.e.
Quax =P V- C (T =T =m-C, (T, - T)) ..(7.26)
where p is the density, V is the volume, (pV) is the mass, C, is the specific heat of the body.

If Q... is positive, body is losing energy; and if it is negative, body is gaining energy.

Based on the one-term approximation discussed above, (Q/ Q.. is calculated for the three cases, from the
following:

Plane wall: L =1- 6 ﬂ’l_ll (7.27, a)
Qmax ’1]
. Q J1(41)
Cylinder: = =1-2-6 — .(7.27, b)
Y Qmax /11
Sphere: Q - =1-38 (sin(/h) - /31] .COS(Al)] (727, ¢}
Qmax j-l

Note:
(i) Remember well the definition of Biot number i.e. Bi = (hL/k), where L is half-thickness of the slab, and Bi
= (kR /k), where R is the outer radius of the cylinder or the sphere.
(ii) Foregoing results are equally applicable to a plane wall of thickness L, insulated on one side and
suddenly subjected to convection at the other side. This is so because, the boundary condition dT/dx = 0
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TABLE 7.1 Transient heat conduction in a plane wall, long cylinder and sphere-coefficients for one-term
approximation

Piane wall . . -Sphere

Bi, in A i A,
0.01 0.0998 1.0017 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0060 0.2445 1.0060
0.04 0.1987 1.0066 0.2814 1.0099 0.3450 10120
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.1 0.3111 10181 0.4417 1.0246 0.5423 1.0298
0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
05 0.6533 1.0701 0.9408 1.1143 1.1656 11441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 11713
0.7 0.7506 1.0018 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1490 11724 14320 1.2236
0.9 0.8274 14107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 11191 19558 1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 17887 14191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
50 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 13766 1.2532 2.0937 1.5411 2.7165 1.8673
8.0 1.3078 1.2570 2.1286 1.5526 2.7654 1.8920
9.0 1.4149 12598 21566 1.5611 28044 1.9106
10.0 1.4289 12620 21795 1.5677 28363 1.9249
20.0 14961 1.2699 2.2880 1.5919 2.9857 1.9781
30.0 15202 12717 2.3261 15973 3.0372 1.9898
40.0 1.5325 12723 2.3455 15093 3.0632 1.9942
50.0 1.5400 1.2727 23672 1.6002 3.0788 1.9962
100.0 15552 1.2731 2.3809 16015 3.1102 1.9990
- 15708 1.2732 2.4048 1.6021 3.1416 2.0000

at ¥ = 0 for the mid-plane of a slab of thickness 2L {see Eq. 7.23, b), is equally applicable to a slab of
thickness L, insulated at x = 0.

(iii) These results are also applicable to determine the temperature response of a body when temperature of
its surface is suddenly changed to T, This case is equivalent to having convection at the surface with a
heat transfer coefficient,

h = o; now, T, is replaced by the prescribed surface temperature, T,.
(iv) Again, remember that these results are valid for the situation where Fourier number, Fo > 0.2,

7.6.2 Heisler and Grober Charts

The one term approximation solutions (Eq. 7.25) were represented in graphical form by Heisler in 1947. They
were supplemented by Grober in 1961, with graphs for heat transfer Eq. 7.27. These graphs are shown in Fig. 7.7,
7.8 and 7.9, for plane wall, long cylinder and a sphere, respectively. )
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TABLE 7.2 Zeroth and first order Bessel functions of the first kind

x:=001, .,632 ...define range variable x from O fo 3.2, with an increment of 0.1

" BIRETLEL SR SN 2 : z
0.1 0.9975 0.04994
0.2 0.99002 0.0995
0.3 0.97763 0.14832
0.4 0.9604 0.19603
0.5 0.93847 0.24227
0.6 0912 0.2867
0.7 0.8812 0.329
0.8 0.84629 0.36884
09 0.80752 0.40595
1 0.7652 0.44005
11 0.71962 0.4709
1.2 0.67113 0.49829
1.3 0.62009 0.52202
1.4 0.56686 0.54195
15 0.51183 0.55794
1.6 0.4554 0.5698
1.7 0.39798 0.57777
18 0.33999 0.58152
1.9 0.28182 0.58116
2 0.22389 0.57762
2.1 0.16661 0.56829
2.2 0.11036 0.55596
23 0.05554 0.53987
2.4 0.00251 0.520192
2.5 —-0.04838 0.49708
2.6 —0.0968 0.47082
2.7 -0.14245 0.4416
2.8 ~0.18504 0.40971
2.9 —0.22431 0.37543
3 —0.26005 0.33906
3.1 —0.29206 0.30092
3.2 -0.32019 . 0.26134

How to use these charts?
First chart in each of these figures gives the non-dimensionalised centre temperature T;,. i.e. at x = 0 for the slab
of thickness 21, and at r = 0 for the cylinder and sphere, at a given time z Temperature at any other position at
the same time 7, is calculated using the next graph, called ‘position correction chart’. Third chart gives Q/ Qs
Procedure of using these charts to solve a numerical problem is as follows: N
(i) First of all, calculate Bi from the data, with the usual definition of B, i.e. Bi = {(h.L.)/k, where, is the
characteristic dimension, given as: L, = (V/A) ie. L. = L, half-thickness for a plane wall, L. = R/{ for a
cylinder, and L=R/3 for a sphere. If B, < 0.1, use lumped system analysis; otherwise, go for onecterm
approximation or chart selution.
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FIGURE 7.7 Dimensionless transient temperatures and heat flow in an infinite plate of width 2L

If B, > 0.1, i.e. if we have to go for one-term approximation or chart solution, calculate the Biot number
again with the appropriate definition, i.e. B; =(hL/k) for a plane wall where L is half-thickness, and B, =
(hR/K} for a cylinder or sphere, where R is the outer radius. Also, calculate Fourier number, Fo = &. 7/ 1
for the plane wall, and Fo = &. ¢/ R?for a cylinder or sphere.

To calculate the centre temperature, use chart (a} from Figs. 7.7, 7.8 or 7.9, depending upen the geometry
being considered. Enter the chart on the x-axis with the calculated Fo and draw a vertical line to intersect
the (1/B,) line; from the point of intersection, move horizontally to the left to the y-axis to read the value
of 8, = (T,- T,)/{T; - T,). Here, T, is the centre temperature, which can now be calculated since T, and T,
are known.

To calculate the temperature at any other position, use Fig. b of Fig. 7.7, 7.8 or 7.9, as appropriate. Enter
the chart with 1/B; on the x-axis, move vertically up to intersect the (x/L) or (r/R} curve as the case may
be, and from the point of intersection, move to the left to read on the y-axis, the value of 8= (T -T)/(T,
~T,). Here, T is the desired temperature at the indicated position. We multiply #and 4, to get:

T-T - _
ie. 6.8, = o |[lo-Ta) T-T, {7.28)
T{] -T; L-T, -1,
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FIGURE 7.8 Dimensionless transient temperatures and heat flow for a long cylinder
From Eq. 7.28, we can easily calculate T, the desired temperature at the given position, since T, and T, are
known.
{v) To find out the amount of heat transferred Q, during a particular time interval 7 from the beginning (i.e.

7= 0), use Fig. ¢ from Figs. 7.7, 7.8 or 7.9, depending upon the geometry. Enter the x-axis with the value
of (B Fo) and move vertically up to intersect the curve representing the appropriate B;, and move to the
left to read on the y-axis, the value of Q/Qp,, Q is then easily found out since Qpay = MCAT; - T,)- And,
Q = (Q/Qmax )- Qunax-

Note the following in connection with these charts:

(i) These charts are valid for Fourier number Fo > 0.2.

(ii) Specifically, remember that while calculating Biot number, characteristic length (L) used is L, the half-
thickniess for a plane wall, and outer radius, R for the cylinder and the sphere (L, is, now, not equal to:

(V/A)
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FIGURE 7.9 Dimensionless transient temperatures and heat flow for a sphere

(i) In these graphs, (1/B) = 0, corresponds to i — o, which means that at 7= 0, the surface of the bedy is
suddenly brought to a temperature of T, and thereafter maintained at T, at all times.

{iv) To calculate Q up to a given time, first find out Q/ Qiax from the Grober’s chart and calculate (3, from
Qoo = mC,(T; ~ T,}. (See Eq. 7.26). Then, Q is calculated as: (J = (Q/ Qi Prnax

(v) Note from the ‘position correction charts’ that at B; < 0.1 {i.e. 1/B, > 10), temperature within the body can
be taken as uniform, without introducing an error of more than 5%. This was precisely the condition for
application of ‘lumped system analysis’.

(vi} As stated earlier, it is difficult to read these charts accurately, since logarithmic scales are involved; also,
the graphs are rather crowded with lines. So, use of one-term approximation with tabulated values of A,
and 4; should be preferred. However, these graphs are extremely useful for a quick estimation of values
required.
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Use of one-term approximation sotutions and the transient conduction charts is illustrated in the following
examples.
Exomple 7.7. A steel plate (@ = 1.2 x 10° m%/s, k = 43 W/(mC)), of thickness 2L = 10 ¢m, initially at a uniform tempera-
ture of 250°C is suddenly immersed in an oil bath at T, = 45°C. Convection heat transfer coefficient between the fluid
and the surfaces is 700 W/(m*C).
(i) How long will it take for the centre plane to cool to 100°C?
(ii) What fraction of the energy is removed during this time?
(iii} Draw the temperature profile in the slab at different times.
Solution.
Data:
L:=005m e:=1210"m%s k:=43W/mC) T,:=250°C T,=45C
k= 700 W/{m?C) T, = 100°C
To calculate: the time 7, surface temperature and fraction of heat transferred Q/Q,,.,-
First, check if lumped system analysis is applicable:

Bi = hTL (define Biot number)
ie. Bi = 0.814 (Biof number.)

It is noted that Biot number is > 0.1; so, lumped system analysis is not applicable.

We will adopt Heisler chart solution and then check the results from one-term approximation soluticn.
To find the time required for the centre to reach 100°C:
For using the charts, B; = hL/k, which is already calculated.

Fourier number: Fo= %
Centre temperature is given as 100°C. Therefore, calculate
T, -T, '
= define
T -T, {define &)
Le. & = 0.268 (value of &)
Also, % - 1.229 (value of 1/Bi)
i

Now, with this value of &, enter the y-axis of Fig. 7.7,a. Move horizontally to intersect the 1/B, = 1.229 line; from
the point of intersection, move vertically down to x-axis to read Fo = 2.4,
So, we get: Fo:=24
g2
Then, T:= fol $ (define 7, the time required for the centre to reach 100°C})
o
ie 7= 500s {time required for the centre to reach 100°C.}
Surface temperature:
At the surface, x/L =1. Enter Fig. 7.7, b on the x-axis with a value of 1/B, = 1.229, move up to intersect the curve of
x/L =1, then move to left to read on y-axis the value of &= 0.7

T-T,
Le. 8= L =07
T,-T,
Therefore, T=07({T,-T)+T,°C (temperature on the surface)
ie. T = 83.5°C (temperature on the surface.}

Fraction of maximum heat transferred, Q/Q,_ . :
We will use Grober’s chart, Fig. 7.7, ¢

We need B,-2F0 to enter the x-axis:

We get: B Fo =159

With the value of 1.59, enter the x-axis of Fig. 7.7, ¢, move vertically up to intersect the curve of B; = 0.814, then
move horizontally to read Q/Q,, = 0.8

i.e. from Fig. 7.7c, we get: =08

max

i.e. 80% of the energy is removed by the time the centre tamperature reached 100°C.
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Verify by one-term approximation solution: -
Time required for the centre to reach 100°C:

From Eq. 7.25, a, we have:

T, -T. A
Centre of plane wall: & = I? T“ =Ape Ay Fo -(7.25, a)
(x=0)
A, and 4, have to be found from Table 7.1, against B, = 0.814
8274 - 0.7910
Interpolating: A = 07910 + %—E— 1.4
ie. 2 = 0.7%
1107 -1
and, Al = 1.1016 + —1—1~1010—1016 14
ie A = 1103
Now, TL:I‘-‘- = 0.26829
i~ ta
Therefore, Eq. 7.25, a becomes:
0.2682% _ 079" -Fo
1103
( (.268 J
—In| 2=E
. 1.103
ie. =—_——
{0.796)*
ie. Fo =2.233
FoI : .
Then, Ti= 8 {define 1, the time required for the centre to reach 100°C)
o
ie. 7= 465.188 s (time required for the centre to reach 100°C.}
Compare this value with the one got from Heisler's chart, i.e. 500 s. The error is in reading the chart.
Surface temperature when the centre has reached 100°C:
From Eq. 7.24, a, we have:
Tix, 1) - T, .y A
#x, 1) = —% = A€ AP0 og (‘Tx) LFo>02 (7.24, a)
Here, x/L = 1, at the surface of the plate. S0, we get:
T: = (T; = T [Ave ™ ecosidy)) + 7, {define T(x, 1)
T = 83.413°C {temperature at the surface.)
Compare this with the value of 83.5°C obtained earlier. They are quite close.
Fraction of maximum heat transferred, Q/ Q.
From Eq. 7.27, a, we have:
in{A
Plane wall.  —2— =1- 6, i‘%‘—) (727, 8
max 1
- in (4 ' )
ig Fraction: = 1 ~ L -7, sn(h) ...define Fraction, Q/ Q..
L-T 4

ie.

Fraction = 0.759

i.e. 75.9% of the energy is removed by the time the centre temperature has reached 100°C.

Compare this with the value of 80% obtained earlier; again, the error is in reading the charts.

Note: It is apparent from this example that the error involved in reading the graphs can be substantial; this is because
logarithmic scales are involved and also the lines are rather crowded in the graph. So, one-term approximation with
table of values of A, and A, against B; should be preferred.
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To draw temperature profile in the plate at different times:
We have, for temperature distribution at any location:

T(x, )~ T, : x
Plane wall: 8x, D= Txn-T = A, e Fcos Aoz Fo>02 .(7.24, a}
T-T, L
Tﬂ - Ta - & -Fo
And, centre of plane wall: &, = =A;e ™ (7.25, a}
{x = 0} T-T,
. . ot
Fourier number as a function of 7: Fo(7) = = -.for slab

By writing Fourier number as a function of 7, and including it in Eq. A below as shown, it is ensured that for each
new 7, the corresponding new Fo is calculated.

T+ (% - THA e #7)ifx=0
Then, T(x, 5 = . (A)
T,+{T-T, }-(A, e* F"m-cos(%n otherwise

For a given 7, we will plot Eq. A against x; then, we will repeat for different times, =«

We use Mathcad to draw the graph. First, define a range variable x, varying from 0 to say, 0.05 m, with an
increment of 0.001 m. Then, choose x—y graph from the graph palette, and fill up the place holders on the x-axis and y-
axis with x and T(x,30), respectively. Since our aim is to plot T{x, 7) for different values of x for given ¢ start with 7= 30
s; immediately, this graph is drawn, when we click anywhere outside the graph region. To get the graph for next value
of 7=120, on the y-axis, next to the earlier entry, type a comma and enter T(x,120) and click anywhere outside the graph
region. Repeat this for different values of 7, as shown. See Fig. Example 7.7.

x:=0, 0.001, .., 0.05 (defing a range variable x varying from zero to
0.05 m, with an increment of 0.001 m)

Transient cooling of a large plate
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after 30 sec. — — after2min. ----- after 5 min.
- — - after 10 min. ——— after 25 min.

FIGURE Example 7.7 Tronsient cooling of a large plote, one-term approximation solution

Note:
(i) Note that the above graph shows temperature distribution for one half of the plate; for the other half, the tem-
perature distribution will be identical.
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(ii) See from the above Fig. Example 7.7 how cooling progresses with time. After a time period of 25 min the
temperatures in the plate are almost uniform at 45°C.
(iii)) Eg. A illustrates a small piece of Mathcad programming. It uses the “if..otherwise” condition, ie. if x = 0, the
temperature at the centre is given by Eq.7.25, a; otherwise, temperature distribution is given by Eq. 7.24, a.
Exnmple 78. A long, 15 cm diameter cylmdrlcal shaft made of stainless steel 304 (k = 14.9 W/(mC), p = 7900 kg/m’,
= 477 | /(kgC), and @ = 3.95 x 10° m%/s), comes out of an oven at an uniform temperature of 450°C The shaft is then
aﬁowed to cool slowly in a chamber at 150°C with an average heat transfer coefficient of 85 W/{m?C).
(i) Determine the temperature at the centre of the shaft 25 min after the start of the cooling process.
(i} Determine the surface temperature at that time, and
(iii} Determine the heat transfer per unit length of the shaft during this time period.
(iv} Draw the temperature profile along the radius for different times.
Solution.
Data: ‘
Li=1m R:=0075m a=395x10°m/s k:=149W/(mC) C,=477]/(kgC) p:=7%00kg/m’
T, = 450°C T, = 150°C h =85 W/(m2C) T:= 1500 s
To calculate: the centre temperature afer time 7, surface temperature and amount of heat transferred during this
period.
First check if lumped system analysis is applicable:

R
Bt
Bi := TZ (define Biot number...for a cylinder, L, = (V/A) = R/2)
ie. Bi=0214 (Biot number.)

It is noted that Biot number is > 0.1; so, lumped system analysis is not applicable.

We will adopt Heisler chart solution and then check the results from one-term approximation solution.
To find the centre temperature after a time period of 1500 s:
For using the charts, now, remember that B, is defined as:

Bi .= hTR (define Biot number)
ie. Bi = 0.428 (Biot number)
Fourier number: Fo = %25 (define Fourier number)
ie. Fo = 1.053 ) {Fourier number)
Also, ﬁ = 2337 ..value of 1/Bi

Now, with the value of Fo = 1.053, enter the x-axis of Fig. 7.8,a. Move vertically up to intersect the 1/Bf = 2.337 line;
from the point of intersection, move horizontally to left, to read on the y-axis 6, = (.49.

T,-T.
So, we get: #=049=L 2

T; - TH
ie. Ty=T,+049.(T,-T) (define centre temperature)
ie. Ty = 297°C (centre temperature after 25 min duration.)

Surface temperature:
At the surface, /R = 1. Enter Fig. 7.8, b on the x-axis with a value of 1/Bi = 2.337, move up to intersect the curve of
r/R =1, then move to left to read on y-axis th value of #=0.76

T-T,
ie. 8= ~ =076
L-T,
Therefore, T:=076(T,-T) + T, °C (Temperature on the surface)
ie. T = 261.72°C (temperature on the surface.)

Amount of heat transferred, Q:

We will use Grober’s chart, Fig. 7.8, ¢:
We need B7Fo to enter the x-axis:

We get: B2Fo = 0.193
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With the value of 0.193, enter the x-axis of Fig. 7.8, ¢, move verticai!y up to intersect the curve of B; = 0.428, then
move horizontally to read Q/Q,,,, = 0.55

i.e. from Fig. 7.8, c, we get: Q =055

max

Now, Omax = p-V-Czp-(T, -T) {maximum heat transfer possible)
Le. Qmax = P(”R L)Cp(Tl - Ta} (deﬁne Qmax)
ie. Q= 1998 x 107 ] {maximum heat transfer)
Therefore, Q=0 05] (define ()
ie. Q=1099x10] (heat transferred during 25 min)

Verify by one-term approximation solution:
Centre temperature reached after 25 min:
From Eq. 7.25, b, we have:

. T -T, -2 Fo
Centre of long cylinder: § = =—=% = A,-¢ ™ (725, b
S g oyl & ToT. 1 ( )
A; and A, have to be found from Table 7.1, against B, = 0.428
Interpolating: A, = 0.8516 + —0'94081_00'8516 2.8
ie. A =0877
and, A= 10931 + W1‘11ﬁ1510931 28
ie A, = 1.099
2

Therefore, 8y := Ay g~MFo (725, b)
ie. 8, = 0.489 (dimensionless centre tamperature)

Then, again from Eq. 7.25, b

Ty:=T,+0489(T; - T) (define centre temperature)

ie. Ty = 296.7°C ..centre temperature of cylinder after 25 min.

Note that this value compares well with the value of 297°C obtained by reading Heisler charts.
Surface temperature after 25 min:
From Eq. 7.24, b, we have:
Long cylinder: a(x, 9 = % = A e i (%) Fo»02 (7.24,b)

i~ 1a

In Eq. 7.24, b, [, is the zeroth order Bessel function of the first kind. Its value can be read from Table 7.2. However,
while using Mathcad, [, can be got directly by typing “J; (4)=".
ie. Jol4;) = 0.817

And, while using Mathcad, it is not even necessary to separately obtain the value of J,(4,).

See below the expression for T. While calculating the expression for T, value of [i(4)) is returned and substituted
automatically, and we get the final value of T as shown.

Here, r/R = 1, at the surface of the cylinder. So, we get:

Ti= (T~ Ta{Ave 7 LA + T, (define T(x, 7))

ie. T = 269.899°C . (temperature at the surface.)
Compare this with the value of 261.72°C obtained earlier from the charts. The error is in reading the charts.

Amount of heat transferred, (:

From Eq. 7.27, b we have:

Cylinder: L .24 I‘EI—“ (727, b)
max 1
ie. Fraction : = 1- 20~ 1« fildi) (define Fraction, 0/Q,..)

L-T, 4
ie. Fraction = 0.556
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Now, Quax = 1.998 x 107§
Therefore, Q= Qax-0.556 ]
ie. Q=111 x10 )
Note again that this value of Q is quite close to that obtained from Grober’s chart.
To draw radial temperature distribution at different times:
Let us draw radial temperature distribution at 7= 15 min, 25 min, 1 hr., etc.
We have, for temperature distribution at any location:

T -T, : -
Long cylinder: 6x, 0= -1, Ay e”g‘“-j’o[—tll—r) ~Fo>02
I -T, R
T, -T _2.
Centre of long cylnder: B =2t w A
(r=0 T-T,

Fourier number as a function of 7: Fo(1) := %
T, + (T - TH{Ae 55 if r=0

Then, T(r, 7= . ]
T, +(T. - Tu)-(fh TR (%D otherwise

For a given 7, we will plot Eq. A against r; then, we will repeat for different times, 7

(already calculated)
(heat transferred in 25 min)
(heat transferred in 25 min.)

(724, b)

{725, b)

.for cylinder

(A

We use Mathcad to draw the graph. First, define a range variable r, varying from 0 to say, 0.075 m, with an
increment of 0.001. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and y-axis
with r and T(r, 900), respectively. Since our aim is to plot for different values of r for given 7, start with 7 = 900 s;
immediately, this graph is drawn, when we click anywhere cutside the graph region. To get the graph for next value of
7 =1500, on the y-axis, next to the earlier entry, type a comma and enter T(r,1500) and click anywhere outside the graph

region. Repeat this for different values of 7as shown. See Fig. Ex. 7.8.

r:=0, 0001, .., 0075 (define a range variable r varying from zero
to 0.075 m, with an increment of 0.001 m)

Transient cooling of a cylinder
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FIGURE Example 7.8 Transient cooling of a cylinder, one-term approximation solution

Note:

{i) See from the figure how cooling progresses with time. After a time period of 2 hrs the temperatures along the
radius are almost uniform, but is yet to reach ambient temperature of 150°C. After about 3 hrs; the body has

almost come to equilibrium with the ambient
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{ii) Eq. A illustrates a small piece of Mathcad programming. It uses the “if...otherwise” condition, i.e. if r = 0, the
temperature at the centre is given by Eq. 7.25, b; otherwise, temperature distribution is given by Eq. 7.24, b.
(iii) Observe from the graph that after 25 min, temperature at the centre (r = 0) is 296.7°C and at the surface {r = 0.075
m), the temperature is 269.9°C as already calculated.
Example 7.9. An apple, which can be considered as a sphere of 8 cm diameter, is initially at a uniform temperature of
25°C. It is put into a freezer at ~15°C and the heat transfer coefficient between the surface of the apple and the surround-
ings in the freezer is 15 W/(m?C). If the thermophysical properties of apple are given to be: p = 840 kg/ m’, C,=36K/
(kgC), k = 0.513 W/(mC), and & = 1.3 x 1077 m’/s, determine:
(i) centre temperature of the apple after 1 hour,
(ii) surface temperature of apple at that time, and
“{iii} amount of heat transferred from the apple.
{(iv) draw the temperature profile along the radius for different times.
Solution,
Data:
R=0Mm a:=13107"m%/s k:=0513W/(mC) C,:=3600)/(kgC) p:=840 kg/m® T, = 25°C
T,:=-15°C  h:=15W/(m*C) 7:=3600s
To calculate: the centre temperature after time 7, surface temperature and amount of heat transferred during this
period.

First check if lumped system analysis is applicable:

R
b
Bi = _k;i (define Biot number...for a sphere, L. = (V/A)y=R/3)
ie. Bi = 0.39 {Biot number)

It is noted that Biot number is > 0.1; so, lumped system analysis is not applicable.

We will adopt Heisler chart solution and then check the results from one-term approximation solution.
To find the centre temperature after a time period of 3600 s
For using the charts, now, remember that Bi is defined as:

Bi:= hTR (define Biot number)
ie. Bi=1.17 (Biot number)
Fourier number: Fo:= % (define Fourier number)
Le. Fo = 0292 (Fourier number)

" Also, % = 0.855 {value of 1/Bi.)
i

Now, with the value of Fo = 0.292, enter the x-axis of Fig. 7.9,a. Move vertically to intersect the 1/B; = 0.855 line;
from the point of intersection, move horizontally to left, to read on the y-axis 6, = 0.45

So, we get:
T -T
6, = 045 = 22—~
’ T-T.
ie. Tpi=T,+045(T, - T)) (define centre temperature)
ie. Ty = 3°C (centre temperature after 1 kr duration.)

Surface temperature:
At the surface, r/R =1. Enter Fig. 7.9, b on the x-axis with a value of 1/B; = 0.855, move up to intersect the curve of r/R
= 1, then move to left to read on y-axis the value of 8= 0.6

T-T,
ie. 8= L =06
ie ToT,
Therefore, T:=06(T,-T)+T,°C {temperature on the surface)
ie. T =-42°C (temperature on the surface.)

Amount of heat transferred, (
We will use Grobet's chart, Fig. 7.9, c:
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We need B Fo to enter the x-axis:

We get B7-Fo = 04

With the value of 0.4, enter the x-axis of Fig. 7.9, ¢, move vertically up to intersect the curve of B; = 1.17, then move
herizontally to read Q/Q,,, = 0.56

i.e. from Fig. 7.9, ¢, we get: -5 = 0.56

max

Now, Qmax = PV C (T~ T) (maximum heat transfer possible)
. 4
ie. Q= p (378G (1= Ty (define Q)
i.e. Quax = 3243 x 10 ] (maximum heat transfer)
Therefore, Q= Qua x056] (define ()
ie. Q= 1.816 x 10*] (heat transferred during 1 kr.)

Verify by one-term approximation solution:
Centre temperature reached after 1 hr:
From Eq. 7.25, ¢, we have:

LTl PR {725, ¢)
T:‘ *Ta

Centre of sphere: =
(rESO) phere &

A, and 4 have to be found from Table 7.1, against B; = 1.17

Interpolating: 4, := 1.5708 + w-l.?

10

ie. A= 1.649
and, A= 12732 + M-w
ie. A, = 1.308

Therefore, By = A e ..from Eg. (7.25, ¢)
ie. g,=0591 - ..dimensionless centre temperature

Then, again, from Eq. 7.25, c:

To =T, +0591-(T; - T,) ..define centre temperature

ie. Ty = 8.64°C ..centtre temperature of sphere after 1 hr.

Compare this value with the value of 3°C obtained by reading the graph; error is due to the error in reading the
graph.

Surface temperature after 1 hr:

From Eq. 7.24, ¢, we have:

sin ﬁi
" _ T(r' f)—T; _ -2 Fo R

Sphere: 9(x, 5 = ?Tn =A-€ wh:llr— .Fo>02 (7.4, ¢

R

Here, r/R = 1, at the surface of the sphere. So, we get:

: in(A
T: = (T; - Ta)-[A,-e""F"-S—E}I—)] + T, ..define T(x, 7)
1

ie. T =-0711°C ...temperature at the surface.

Compare this value with the value of ~4.2°C obtained by reading the graph; error is due to the error in reading the
graph.

Amount of heat transferred,

From Eq. 727, ¢, we have:

2
Qmax
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ie. Fraction :== 1 -3 % ﬁ:ra {Sin(ﬁl) —ﬂ.l-cos(l,)] (define Fraction, Q/ Quay)
T - A
ie. Fraction = 0.555
Now, Qe = 3243 x 10* ] {already calculated)
Therefore, Q= Qpax0555] (heat transferred in 1 hr)
ie Q=18x10%] {heat transferred in 1 hr.)

Note again that this value of () compares well with 1.811 x 10* J, obtained from Grober’s chart.
To draw temperature profile along the radius at different times:
We have, for temperature distribution at any location:

sin M
T(rr T) - Tn -At-Fo R
Blx, D =————L =Ape e —2~ .Fo>02 ..(7.24,
. B=—r—F 1 T 0>0 (7.24, ¢)
R
. TO - T:z _ ~-&.Fo
And, at centre of sphere: § = T T - A€ -{7.25, )
Fourier number as a function of r: Fo(7) := % (for sphere}
T, + (5 - T){Aye 5 70)ifr=0
in m
Then, T(r, 7) = Lt e Lk ) (A)
T +{T,-TAre” — otherwise

A
R

For a given 7, we will plot Eq. A against r; then, we will repeat for different times,

We use Mathcad to draw the graph. First, define a range variable r, varying from 0 to say, 0.04 m, with an
increment of 0.001. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and y-axis
with 7 and T{r, 1800), respectively. Since our aim is to plot for different values of r for given 7, start with 7 = 1800 s;
immediately, this graph is drawn, when we click anywhere outside the graph region. To get the graph for next value of
£=3600, on the y-axis, next to the earlier entry, type a comma and enter T{r, 3600) and click anywhere outside the graph
region. Repeat this for different values of t as shown. See Fig. Ex. 7.9.

r:=0,0001, .., 004 (define a range variable r varying from zero to
0.04 m, with an increment of 0.001 m)
Note:
{i} See from the Fig. Example 7.9 how cooling progresses with time. After a time period of 5 hrs the temperature
along the radius is almost uniform, but is yet to reach ambient temperature of —15°C.
(ii) Eq. A illustrates a small piece of Mathcad programming. It uses the “if...otherwise” condition, i.e. if r = 0, the
terhperature at the centre is given by Eg. 7.25, ¢; otherwise, temperature distribution is given by Eq. 7.24, c.
Example 7.10. A large concrete slab, one side of which is insulated, is 60 cm thick and is initially at 70°C. The other side
is suddenly exposed to hot combustion gases at 1000°C with a heat transfer coefficient of 30 W/(m"C). Determine:
(i) time required for the insulated surface to reach 500°C
(ii) temperature distribution in the wall at that instant
(ili) amount of heat transferred during that time period.
Take average propetties of concrete as follows:
= 500 kg/m?, C, = 837 ] /(kgC), k = 125 W/(mC), and a = 0.3 x 107 m?/s.
Solution.
Data:

L=06m a:=0310%m%s k=125W/(mC) C,:=837]/(kgC) p:=500 kg/m®  T,;:=70°C

T,:=1000°C  h:=30 W/(m’C)  Ty:= 500°C o

To calculate: the time 7, at which temperature of insulated surface will reach 500°C, temperature distribution in the
slab at that instant, and amount of heat transferred during this period.
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Transient cooling of a spherical apple

Temperature (C)
(4]
1
f
!

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Radial distance from centre (m)

—— after30min. ——- after1 hr.
----- after 2 hrs. - —- after 3 hrs.
e after 5 hrs.

FIGURE Example 7.9 Transient cooling of a sphericl apple, one-term approximation solution

Time required for the insulated surface to reach 500°C:
First of all, recognise that boundary condition at the insulated surface is the same as at the midplane of a slab of half-
thickness, L i.e. dT/dx at x = 0 is zero.

Therefore, for the present case, we take the thickness of the slab as L.

We will solve this problem by one-term approximation solution:

From Eq. 7.25, a, we have:

= Ay e P A{7.25, a)

T, -T,
Centre of plane wail: =2t
o) Rk R

Eq. 7.25, a is also valid for the insulated surface of a wall of thickness L, as explained above.

Bi .= h—kE (define Biot number)

i.e. Bi=144 (Biot number.)

A, and 4, have to be found from Table 7.1, against B; = 14.4

14961 —1.4289

Interpolating: A= 14289 + TZS 4.4
ie. A = 1.458
and, A= 12620 + 12699 ~ 12620 ,

10

ie. A, = 1.265

Now, Lok o376

-7,

Therefore, Eq. 7.25, a becomes:
053763 _ ,-14587Fo
1265
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_ m[ 0.53763
1265
Foi= —>—=22 2

{1.458)
ie. Fo = 0.403 - {Fourier number)}
FoI?
Then, T= f; s (define . the time require for the insulated surface to reach 500°C)
ie. 7= 48302 x 10* 5 (time required for the insulated surface to reach 500°C.)
ie. r= 13417 hrs

To plot the temperature distribution in the slab when r = 13.417 hrs:
We have to draw temperature as a function of position (i.e. x) for given 7 of 13.417 hus,
We use Eq. 7.24, a, ie.

Tix, 7}~ T,

Plane wall: 8(x, = T

= Ay e-“v“’-cos(%} Fo>02 -(7.24, a)

Therefore, we write:

T(x, 1) i= T, + (T, = T,)- [Al-e“i'&-cos[%)]

Ta plot the T(x, 9 using Mathcad, we first define a range variable x from zero to L = 0.6 m, and then select the x-y

graph from the graph palette. On the place holder on the x-axis, fill in x and on the place holder on the y-axis, fill in T(x,
7). Click anywhere outside the graph region and the graph appears.

x:=0,001,.., 06 (range variable x from zero to 0.6 m with an

increment of 0.01 m)

Transient temperature distribution in insulated slab

1000

950 /

900 7

/

850 4

800 V4
750 //
T{x.1) 700 4 x in metres,
// temperature in deg.C
650 7

600 o
550 -
500

450
400

0 005 0.1 0,15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
X

FIGURE Example 7.10 Transient temperature distribution in an insuloted slab at the instant 7 = 13.417 hrs

Remember: x is measured from the insulated surface.
Amount of heat transferred per unit surface area, Q:
From Eq. 7.27, a, we have:

Plane wall: ——Q— =1- EDE—l—n(—Al) .[(7.27, a)
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ie. 2 -1- E_L_Sm(’h)
Qmax T; - Ta j‘l
Now, Qo= 2 L-C (T, - T) (Joules per unit surface area)
ie. Qu = 2.335 x 10° (Joules per unit surface area)
T - in(4
Therefore, Q= Q| 1-D =L sinth)) o define Q
Ti - T:a ’11
ie Q=148 x10° J/m? (heat transferred per unit surface area during the process)

Positive value of () indicates that heat is transferred into the siab.

7.7 One-dimensional Transient Conduction in Semi-infinite Solids

A solid which has one exposed surface and extends to infinity in other directions is known as a semi-infinite
solid. So, change in boundary condition at the exposed susface initiates temperature transients in the solid. One-
dimensional transient heat conduction in semi-infinite solids, without heat generation, is of interest because of
many practical applications. Common example is that of earth’s surface subjected to changes in the ambient
conditions, thus causing transient conditions in the soil at some depth from the surface; or, in the case of a thick
siab, when the exposéd surface is subjected to a temperature variation, in the early stages when the effect is not
felt at the distant surface, it can be idealised as a semi-infinite solid, to solve the transient conditions near the
surface.

Consider a semi-infinite solid, extending from x = 0 t0 ¥ = =, initially at a uniform temperature, T;. There is
no internal energy generation. Now, if there is a change in the thermal conditions at the exposed surface at x = 0,
transient conditions will be induced in the solid. Fig. 7.10 illustrates three possible boundary conditions at the
surface:
Case (i): Constant surface temperature:
See Fig. 7.10 (a). The solid is initially at a uniform temperature T, and for times 7> 0, the boundary surface at x =
0 is maintained at temperature T, Starting with the differential Eq. for one-dimensional, time dependent
cenduction, for these boundary conditions, the non-dimensional temperature distribution in the solid is obtained
as:

TeD-T o X A7.29)
T;i - T() 2Jat

where, erf({’) is the Gaussian error function defined as:

Initially, solid at 7, Initially, solid at T;
Heat flux,
T=T,fort>0 g, fort>0
—
o X —» 0 X
. —
(a) {b)
initially, solid at T;
Convection, for 1> 0
Tar ’Do X

(c)

FIGURE 7.10 One-dimensional transient conduction in semi-infinite solids
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TABLE 7.3 Voalues of ‘error function’

0 0 1 . 0.8427
0.03 0.0338 1.05 0.8624
0.06 0.0676 ) K 0.8802
.00 01013 115 0.8961
012 1348 12 D.8103
0.15 0.168 125 0.9229
0.18 0.2008 13 0.934
0.21 0.2335 135 0.9438
0.24 0.2657 14 0.9523
027 0.2074 145 0.9597

03 0.3286 5 0.9661
0.33 03593 155 05716
0.36 0.3893 16 0.9763
0.39 04187 165 0.9804
0.42 0.4475 17 0.9838
0.45 0.4755 175 5.9867
0.48 0.5027 18 0.9891
0.51 05292 185 6.9911
0.54 05549 19 0.9928
0.57 05798 195 0.9942

06 0.6039 z 0.9953
0.63 0.627 305 0.9963
0.66 0.6494 21 0.997
0.60 0.6708 515 0.9976
0.72 0.6014 25 0.9981
0.75 07113 525 0.9985
0.78 0.73 23 0.9989
081 0.748 235 0.9997
0.6 0.7651 54 0.9993
0.67 0.7814 2.45 0.9995

09 0.7969 25 0.9996
0.93 08116 255 05997
.06 0.8254 26 0.9998
0.99 0.8385 2.65 0.9998

27 5.9999
2.75 0.9999
28 0.9999
2 ¢ 2
erf({) = ﬁ.jo exp{~u~)du (7.30)

Error function is a standard mathematical function. It is integrated numerically and the values are tabulated
in Table 7.3.
Gaussian error function is also shown plotted in Fig, 7.11.
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Gaussian error function
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0.8 //
0.7 /]
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FIGURE 7.11 Gaussian error function erf({) vs. £

Remember again that in Fig. 7.11, quantities plotted on x-axis and y-axis are respectively £and erf (&), with
the definition:

{= al and, erf({)= M from Eq. 7.29
2-Ja-t Ti-Tp
Then, from Eq. 7.29, we have the temperature distribution as:
X
T(x, 7y =Ty + (T, - TO)-ﬁz— -J'\i“‘“'f exp(—uz)du ..(7.31)
Jr do
Once the temperature distribution is known, heat flux at any point is obtained by applying Fourier's law, i.e,
Qi =-kA ﬂ% W {instantaneous heat flow rate at @ given x location)
x

Performing the differentiation on T{x, 7} given by Eq. 7.31 by Leibnitz's rule, we get,
ar_L-T -
dx J ra-T 4ot

Substituting this in Fourier’s law, we get:

ex —xz
P 4at W

ie. i = —k-A (T, - Tp) — == . (7.32)
Q L (
Heat flow rate at the surface (x = 0):
Putting x =0 in Eq. 7.32,
To =T,
qurface = kA( 0 TI) w (733)
ot

Total heat flow during r=0to 7= t:
This is obtained by integrating Eq. 7.33 from z=0to r= 7

_ kAT T (71
total — ,"Jr_'a o T
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; ’ T
1E. Qo = k-A-(Ty~ Ty 2 |—-

T
. T
ie. Quotar = 1.13-k-A-(Ty -~ T")'J; ] .(7.34)
Criterion to apply these relations for a finite slab:
For a slab of finite thickness L, above relations for a semi-infinite slab can be applied if:
L
2 Jat

=05

Penetration depth and penetration time:
‘Penetration depth’ is the distance from the surface where the temperature change is within 1% of the
change in the surface temperature, ie.

T—
To - g99
T.-Ty
From Table 7.3, this corresponds to:
t_ -18
2-Jo-T

i.e. penetration depth, ‘d’ is given by:

d=36Jat

/Penetration time’ is the time taken for the surface perturbation to be felt at that depth. Therefore,

d2
4 =18 or, §,=—"—
2. a.rp 13-«
Case (ii): Constant surface heat flux:
See Fig. 7.10 (b). The solid is initially at a uniform temperature T, and for times 7> 0, the boundary surface at x

= 0 is subjected to a constant heat flux q,.(W/ m?). Then, the temperature distribution in the solid is given as:

aT
2:4p- ‘_7;_ [ _2 ] Go-X { ( X ﬂ
Tx, ) =T; + -exp - Ed1-erf ...{7.35)

k 4ot k 2Jat
where, erf is the error function defined ealier.
Case (iii): Convection at the exposed surface:
See Fig. 7.10 {c). The solid is initially at a uniform temperature T;, and for times 7> 0, the boundary surface at x
= 0 is subjected to convection with a fluid at temperature T, and heat transfer coefficient, k.
Then, an energy balance at the surface gives:

—k-[ﬂ] - (T, - T(O, D)
x=0

dx

and, the non-dimensional temperature distribution in the solid is given as:

Tix,0)-T; _ X h_x ot 1.z X h-\/ﬁ
——#_TQ—T,- -1—erf[2_ﬁ-}]—[ex]3{ X + o) D {l erf[z.‘[a__+ p {7.36}

To represent Eq. 7.36 in graphical form:

x ‘nfat
K

-~

Put {— and, 7=

" 2Jat
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then, % =2-Ln and, Eg. 7.36 can be written as:

8(n, ) =1 -erf({) ~ (exp(2-{ i+ 77))-(1 - exf({ + 7)) -A7.37)

Let us plot 8(7, ) against z for various values of 7.

We use Mathcad to draw the graph. First, define a range variable {, varying from 0 to say, 1.8, with an
increment of 0.05. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and
y-axis with {'and 8(0.05, {'), respectively. Since our aim is to plot 8(z, £) for different values of ¢{ for given 7,
start with 77 = 0.05; immediately, this graph is drawn, when we click anywhere outside the graph region. To get
the graph for next value of 77 = 0.1, on the y-axis, next to the earlier entry, type a comma and enter (0.1, ¢}, and
click anywhere outside the graph region to get the next graph, Repeat this for different values of 5 as shown.

{=0,005..,18 (define a range variable { varying from zero to
1.8, with an increment of 0.05)

- Semi-infinite sclid—onvection at surface

1
oy
\\ - .\\
= \“.\Q
\-\"\ \\2\.\'§\\
S EORD
. A Y ‘.\\
oL 01| ane
S \“ Y Y
- \L - N
. S0k T NSRS
. = v oy N X
=1 01f-. . N
S ISR
n=05 | | T IR
. ol \\ Y
0.01 - - e
0 02040608 1 1214 1618
g

FIGURE 7.12 Non-dimensional temperature for a semi-infinite solid with convection on its surface

Remember again, that in the above graph, definition of ¢ and 7 are as follows:

h-Jar
k

X
4 > ‘/E; and, #
Tx. 7 - Tx
T,-T; .
The uppermost curve in the graph is for very large 7, and can be taken as for # = . It signifies & = co, and
this implies that convection resistance is equal to zero and the temperature of the surface is equal to that of the
fluid; in other words, this case is equivalent to the case (i) already studied, where surface temperature was
suddenly changed to T, and then maintained at that temperature for all times 7 > 0.
Example 7.11. A thick copper slab (& = 1.1 x 107 m?/s, k = 380 W/(mC)) is initially at a uniform temperature of 250°C.
Suddenly, its surface temperature is lowered to 60°C.
(i) How long will it take the temperature at a depth of 3 cm to reach 100°C?
(i) What is the heat flux at the surface at that time?
(iti) What is the total amount of heat removed from the slab per unit surface area till that time?
Solution.
Data:
a=11x10"mYs k=380W/(mC) T,:=250°C Ty=60°C x:=003m T :=100°C

and, 8in &=
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To find the time ¢ required to reach 100°C at a depth of 0.03 m, surface heat flux and amount of heat transferred
during this period.
Time required to reach 100°C at a depth of 3 cm from the surface:
Since this is a very large slab, we will consider it as a semi-infinite medium, with the surface suddenly brought to and
maintained at a constant temperature, T,. This belongs to case (i), refer to Fig. 7.10 (a).

So, Eq. 7.29 is applicable, to get temperature variation as function of position and time, i.e.

Tlx, 1)~ T, i erf{ X ] {7.29)

L-T, 2 Jar

T-T,

1 0

Now, we get: = 0.211 since all temperatures are given.

From Table 7.3 for values of error function, or from Fig. 7.11, it is seen that:
erf(0.189) = 0.211

X
ie. =0.189
Z-Jaf-r
.
Therefore, Ti= ————3 (time required or temperature to reach 100°C at
4:0.189 a depth of 3 cm from the surface)
ie, T=57.262 s (time required for temperature to reach 100°C at a
depth of 3 cm from the surface.)
Heat flux at the surface:
This is obtained from Eq. 7.33, i.e.
T,-T
qurfaoe =k-A- ( L ) w .(7.33)
ot .
(T, - T) 2 ;
Therefore, heat flux: Gucface = k' ——— W/m .since g =Q/A
maT
ie. fGourtace = — 5133 x 10° W/m?

Note: negative sign indicates that energy is leaving the surface, which is true. since the slab is being cooled.
Total amount of heat removed, per unit surface area:
This is obtained by integrating Eq. 7.33 from 1 = 0 to 7= 7, and is given by Eq. 7.34, ie.

A=1m? ...surface area
T
Qo = 113k A-(Ty - n)-\g J A7.34)
ie. Quotat = —5:886 x 107 1/m? ...total heat removed from the slab.

Note: again, negative sign indicates that heat is leaving the slab.
Exomple 7.12. A large block of steel (@ = 1.4 % 107 m?/s, k = 45 W/{mC)) is initially at a uniform temperature of 25°C.
Suddenly, its surface is exposed to a constant heat flux of 3 x 10° W/m’. Calculate the temperature at a depth of 3 cm
after a period of 1 min.
Solution.
Data:

@ =14x10%m?/s k=45 W/(mC) T;:=25C 4g=310W/m® x=003m r:=60s

To find the temperature after a period of time 7= 60 s, at a depth of 0.03 m.
Temperature at a depth of 3 cm, after a time period of 60 s:
This is the case of a semi-infinite slab, with constant heat flux conditions at its exposed surface. So, this is case (ji), refer
Fig. 7.10 (b).

So, Eq. 7.35 is applicable, to get temperature variation as function of position and time, ie.

zq @-T
Ha'y T 2z
Tx, 1) =T, + V -exp( —* J-u l—erf[ z }] (7.35)

k yar k 2. Jﬁ
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Substituting and calculating, we get, :
ie T(x, t) = 98.949°C (temperature at a depth of 3 cm, after a time period of 60 s.)
Note: In Mathcad, there is no need to separately find out erf() and substitute, etc. All calculations are done in one step,
since error function is one of the built-in functions in Mathcad.
Example 7,83. A thick concrete slab {a= 7 x 107 m?%/s, k = 1.37 W/ (mC)} is initiatly at a uniform temperature of 350°C.
Suddenly, its surface is subjected to convective cooling with a heat transfer coefficient # = 100 W/(m?’C) into an ambient
at 30°C. Calculate the temperature 8 cm from the surface, 1 h after the start of cooling.
Solufion,
Data:

o=710"m's k=137 W/{mC) T,:=350°C T,:=30°C = 100 W/ (m?C)

x =008 m T:= 36005

To find the temperature after a period of time 7= 3600 s, at a depth of 0.08 m.
Temperature at a depth of 8 cm, after a time period of 3600 s:
This is the case of a semi-infinite slab, with convection conditions at its exposed surface. So, this is case (iii), refer Fig.
7.10 (o).

So, Eq. 7.36 is applicable, to get temperature variation as function of position and time, i.e.

Tx, )T, x hx HWart x hJet
r-1 - 1- erf[z. avr] - {EXP[TiﬂT—D-[I er{Z-‘/c—r-—; +—k——]] .(7.36)

Therefore,
x K N
Tx, =T, + (T,- T)|1—erf x - exp h—1+h—(:r | 1-erf| 2=+
2 et k k 2 Ja-t k
e T(x, 7} = 287.811°C (temperature at a depth of 8 cm, after a time period of 3600 s.)

Again, note the ease with which above expression is calculated in Mathcad.
Exercise: Check this result from Fig. 7.12.
To show graphically the progress of cooling at various times:
It is interesting to see how the cooling of the slab progresses with time. So, let us calculate the temperatures reached by
the same point, i.e. at a depth of 8 cm from the surface, for different time periods:
r:=01,02, .., 15 (define a range variable t, varying from 0.1 hr
to say, 15 hr at an interval of 0.1 hr)

Progress in cooling a semi-infinite slab

400
380
360
340 1y
320
300
280 —N
T(x,1.3600) 260 T\
————— 240
220
200 \\
180 "~
160
140
120 o -
100 LT

0 1 2 3 45 6 7 8 9 101M1 121314 15
T

tin hrs.
(X, 1)in deg.C

FIGURE Example 7.13 Semi-infinite slab with convection at its surface—Temperature of a point 8 cm below
the surface for various time periods,
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Note: See from the above graph that after about 15 hrs the temperature of the point 8 cm below the surface is approach-
ing a temperature of 100°C.
Example 7.14. In areas where ambient temperature drops to sub zero temperatures and remains so for prolonged peri-
ods, freezing of water in underground pipelines is a major concern. It is of interest to know at what depth the water
pipes should be buried so that the water does not freeze.

At a particular location, the soil is initially at a uniform temperature of 15°C and the soil is subjected to a sub zero
temperature of -20°C continuously for 50 days.

(i} What is the minimum burial depth required to ensure that the water in the pipes does not freeze?, i.e. pipe

surface temperature should not fall below 0°C.
(ii) Plot the temperature distributions in the soil for different times i.e. after 1 day, 1 week, etc. Properties of soil
may be taken as: a = 0.138 x 10° m%/s, p = 2050 kg/m®, k = 0.52 W/{mK), C, =1840 ]/kg K.

Solution.
Data:

@=0138-10"m/s k=052 W/(mC) T;:=15C Tp:=-20°C T:=00°C 7:=50-24-3600 s
ie. 7=4.32x 10°s (time duration of exposure of soil to sub zero temperature)

To find the depth x required to reach 0°C under these conditions.
Depth at which temperature reaches 0°C:
We shall consider earth’s surface as a semi-infinite medium, with the surface suddenly brought to and maintained at a
constant temperature, T,. This belongs to case (i), refer to Fig. 7.10 (a).

So, Eq. 7.29 is applicable, to get temperature variation as function of position and time, i.e.

T DT _ o X (7.29)
T-T, 2ot
T - Tu . .
Now, we get: T = 0.571 since all temperatures are given.
[
From Table 7.3 for values of error function, or from Fig. 7.11, it is seen that:
erf(0.559) = 0.571
x
ie. = 0559
2-,/(1-‘:
Therefore, x: = 05592 Jar m (define x)
ie. x=0863m (depth at which pipes should be buried to

prevent water from freezing.)
To plot the temperature distributions in the soil at a depth of 1 m for different times, r:
Again, we use Eq. 7.29. From this equation temperature as a function of x and ris written as:

T(x, 8 = Ty + (T, - Tu).erf(z‘/’;__r] {A)

To plot Eq. A against x for different 7, in Mathcad, first of all define a range variable x varying from 0 to 1 m at an
interval of, say, 0.01 m. Then, select x-y graph from the graph palette and fill in the place holder on the x-axis with x and
the place holder on the y-axis with T{x, 5}, T(x, ), T(x, %)... etc. where 7, 2, ... are different times, as desired. Take care
that ris entered in s. Then click anywhere outside the graph region and the graph appears immediately.

x:=0,001, .., 1 : (define a range variable x, varying from 0 to 1 m,
with an increment of 0.01 m)
Note from the Fig. Example 7.14 that: )
(i) even after a peried of 50 days of exposure of the surface to an ambient at -20°C, temperature at a depth of 1 m
has reached only about 2.5°C.
(ii) after 50 days, freezing temperature of 0°C is reached at a depth of 0.863 m, as calculated.
(iii) slope of the temperature curve, dT/dx, at the surface (i.e. at x = 0) decreases as time increases; this means that,
heat extracted from the surface decreases as time increases.

TRANSIENT HEAT CONDUCTION




Semi-infinite medium-Temperature profile on x
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FIGURE Example 7.14  Semi-infinite medium—Temperature varigtion in 1 m depth for sudden change in
surface temperature after different times

7.8 Transient Heat Conduction in Multi-dimensional Systems—
Product Solution

In sections 7.6 and 7.7 we considered one-term approximate solutions and Heisler chart solutions for infinite
plates, long cylinders, spheres and also for a semi-infinite medium. Underlying assumptions throughout were:
one-dimensional conduction and no internal heat generation. However, there are many practical cases where
assumption of one-dimensional conduction may not be valid, ie. temperature gradients may be significant in
more than one-dimension. For example, in a ‘short cylinder’ whose length is comparable to diameter, it is
intuitively clear that temperature gradients will be significant in both the longitudinal and radial directions, i.e.
the heat transfer will be two-dimensional. Similarly, for a long rectangular bar, it is reasonable to say that heat
transfer will be significant in both the x and y directions, and in a parallele piped, heat transfer will be three-
dimensional.

7.8.1 Temperature Distribution in Transient Conduction in Multi-dimensional Systems

Some of the common two-dimensional geometries of interest are: a short cylinder, semi-infinite cylinder, infinite
rectangular bar, etc. These geometries can be imagined to be obtained by the intersection of any two of the one-
dimensional systems studied above and for which one-term approximate solutions or chart solutions are
available. Just to give an example, a short cylinder of radius R and length 2L can be imagined to be obtained by
the intersection of a long cylinder of radius R and an infinite plate of thickness 2L; an infinite rectangular bar of
sides 2L, and 2L, is obtained by the intersection of two infinite plates of thickness 2L, and 2L, respectively, etc.

Now, in such cases, it has been shown (proof is beyond the scope of this book} that for a two-dimensional
system, with no internal heat generation, it is possible to construct the solutions for dimensionless temperature
distribution in transient heat conduction, by combining the solutions of dimensionless temperature distributions
obtained for one-dimensional transient conduction, i.e. the desired two-dimensional solution is given as a
product of the one-dimensional solutions of the individual systems which form the two-dimensional body by
their intersection. So, in general, we write:

6, solid 6 system 1 6; system 2 % system 3

LHS of Eg. 7.38 refers to the two or three-dimensional body under consideration and system1, system?2 etc.
are the one-dimensional systems which by their intersection form the body. (6/4) is the dimensionless

FUNDAMENTALS OF HEAT AND MASS TRANSFER



temperature distribution of the one-dimensional system, which is available from Heisler charts or one-term ap-

proximation solutions.

Some of the combinations ef such one-dimensional systems and the resulting two-dimensional bodies are
shown in Fig. 7.13. Remember that for a semi-infinite solid, x coordinate is measured from the surface, and for
the plane wall, it is measured from the mid-plane. In Fig.7.13, for convenience, we use the following notations:

Hwal](x-' 7) = M] = (_
wall

T-T,

8

Ti“Ta

semi_inf

J -{7.39, a)
wall

aytr, 0= | 20T J - {
Ti-T, long_cyl 8,

o

With this notation, two-dimensional solution for a long, rectangular bar is given by:

T(x,y, 7)-T,
Tz‘ - Ta

lect,bar

= wa]](x' 7) 'Hwall(y' 7)

—J (7.39, b)
i tong_cyl
i) {739, )
o, semi_inf

(7.40)

And, two-dimensional solution for a short cylinder is given by:

8(x, ¥, T) = Bgul% T)-Bgemicinlh T)

.
o

*r-_x
al .

2L

FIGURE 7.13{(a) Semi-infinite plate

G(X. b I) = ews"(x’ 1)'ewall(y' T)'?semi-inftz' t)

FIGURE 7.13(c) Semi-infinite rectangular bar

8(x, ¥, T) = B,gy(X, T0.8,5 (Y, T)

..

FIGURE 7.13(b) Infinite rectangular bar

B(x, ¥, Z, T) = 0, (X, 110,54 T0,an(Z, T)

FIGURE 7.13(d) Reclangular parallelepiped
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X X

A 0rm= ecyl(r' ) Byariindl®. T) 9(?‘: rnt= chl(r- T)-Byarl%. T)
»r

. 1 2

FIGURE 7.13(e} Semi-infinite cylinder FIGURE 7.13(f) Short cylinder

= a2, 7) Byl T) (7.41)

T(r,x, 1}~ T,
Ti - Ta

)short_cyl

Important Note: :

{i) Dimensionless temperatures for the one-dimensional systems used to form the product solution for the
two/three-dimensional body, must be chosen at the correct locations. In doing so, always remember that
for a semi-infinite plate, x is measured from the surface and for an infinite plate, x is measured from the
mid-plane.

{ii) If temperature is to be calculated after a given time for the multidimensional body, the solution is
straightforward, as shown; however, if the time is to be calculated to attain a given temperature, then, a.
trial and error solution will be required.

7.8.2 Heat Transfer in Transient Conduction in Multi-dimensional Systems
It has been shown that heat transfer in a multidimensional body in transient conduction can be obtained by using:
the Grober charts (see Figs. 7.7, 7.8 and 7.9) for (}/Q,,,,, for the one-dimensional systems constituting the given
multidimensional body.

For a body formed by the intersection of two one-dimensional systems 1 and 2, we have:

_,gm] [&] [ 0 }[l[&]] o)
[Qmax total Qma.x 1 Qmax 2 Omax 1

For a body formed by the intersection of three one-dimensional systems 1, 2 and 3, we have:

&) ) (&) ) (&) )]

. (7.43)

Example 7.15. A rectangular aluminium bar 8 cm x 5 em (@ = 8.4 x 10° m%/s, k = 200 W/ {m(C), Cr' = 890 J/(kgC), p =
2700 kg/m?), is initially at a uniform temperature of T, = 200°C. Suddenly, the surfaces are subjected to convective
cooling into an ambient at T, = 20°C, with the convection heat transfer coefficient between the fluid and the surfaces
being 300 W/(m’C). Determine the centre temperature of the bar after 1 min from the start of cooling
Solution. Recognise that this is the case of an infinite rectangular bar (Fig. 7.13b), formed by the intersection of two
infinite plates, one of thickness 2L, = 8 cm and the other, 2L, = 5 cm.
Therefore, product solution can be adopted to get dimensionless temperature distribution.
Data:

Li:=004m [,:=0025m @:=8410"ml/s k:=200W/(mC) o= 2700 kg/m’

G, = 890 ]/ (kgC) T; = 200°C T, = 20°C h = 600 W/(m*C) r:=60s

To find: the centre temperature T, after time 7, surface temperature and amount of heat transferred
Centre temperature of the slab:
Solution &is given as the product of the solutions for two infinite slabs 1 and 2:
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For stab 1:
nl, -

Bi = - (define Biot number)

ie. Bi =012 (Biot number.)

Fourier number:  Fo := az

B

ie. H Fo =315

For dimensionless temperature at the centre of the wall, we use Eq. 7.25, a:

Centre of plane wall: 6, = LT, . Apehh {7.25, a)

(x=0) e e

A, and A4, have to be found from Table 7.1, against B; = 0.12

Interpolating;: A= 03111 + %Sl_()()il-l.z
ie. A, = 0.326

| -101
and, A= 10161 + M-LZ
10

ie. A, = 1.018

Therefore, by = A grh R {dimensionless centre temperature for slab 1}
ie. Gy, = 0729 (dimensionless centre temperature for slab 1)

For slab 2:

.kl )
Bi:= p (define Biot number)

ie. Bi = 0.075 (Biot number)

Fourier number:  Fo := {i—r
i.e. Fo = 8.064

For dimensionless temperature at the centre of the wall, we again use Eq. 7.25, a:
A, and 4, have to be found from Table 7.1, against B; = 0.075

0.2791-0.2425 15

Interpolating: A= 02425 + 50
ie. A =027
1.013 - L
and, Ay = 10098 + ﬂ—l@-ls
20
ie. A = 1012
2
Therefore, 8, = A, g Frfe (dimensionless centre temperature for slab 2)
ie. & = 0.562 (dimensionless centre temperature for slab 2)
Therefore, dimensionless centre temperature for the two-dimensional slab is given by the product solution:
8y:= 05O {define 8, dimensionless centre temperature for given slab)
ie. 6, =041 (demensionless centre femperature for given siab)
Centre temperature of given slab:
T -T.
We have: 9= >~
T-T,
Therefore, To=T,+ 6, (T,-T) ...define centre temperature of slab
Le. Ty = 93.775°C (centre temperature of two-dimensional slab.)
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Exercise: Find out the amount of heat transferred per metre length, Q. Also solve this problem, using Heisler and
Grober charts. see Fig. 7.7.
Example 2.36. A short, brass cylinder (k = 110 W/(mC), p = 8530 kg/m®, C, = 389)/(kgC), and &= 3.39 x 107° m?/s), of
8 cm diameter and height 15 em is initially at a uniform temperature of T; = 200°C. The cylinder is placed in a convective
environment at 40°C for cooling with an average heat transfer coefficient of 500 W/{m?C).
{1} Determine the temperature at the centre of the cylinder 2 min after the start of the cooling process.
(ii} Determine the centre temperature of the top surface at that time, and
(i} Determine the heat transfer from the cylinder during this time period.
(iv) Draw the temperature-time history for the centre of the short cylinder
Solution.
Data:
L:i=007m R:=00M4m @=339x10"m/s k:= 110 W/(mC) C, =389 ]/ (kgC)
p=8530kg/m’  T;=200C T,=40C k=500 W/im*C) 7:=120s _
Recognise that this short cylinder can be considered to be formed by the intersection of a long cylinder of radius
R =4 em and a plane wall of thickness 2L = 15 cm. See Fig. 7.13 (f).
Therefore, product solution can be used. We apply Eq. 7.41, ie.

[ Tir.x, 1)~ T,

= Gyan{x, T} p(r, 7) (741}
T; - T" J short_cyl

Temperature at the centre of cylinder:
800, 0, 7) = B, {0, 7)-6,1(0, D
For dimensionless centre temperature of plane wall:

Fo = -‘g (Fourier number)
L

i.e. Fo = 07232 (this is > 0.2)
Bi:= hTL (Biot number)
Le. Bi = 0.34091 (Biot number)

For dimensionless temperature at the centre of the wall, we use Eq. 7.25, a:

T, -, »

Centre of plane wall: 8, = —T%T” =Ap e AF (7.25, a)

A, and A have to be found from Table 7.1, agatnst B; = 0.341
0.5932 - 05218

Interpolating: Ay = 05218 + m 4.1
je. A = 0.55107
1.6580 — 1.0450
and, A= 1.0450 + —S-qwlﬂ-fl.l
ie. Ay = 1.05033 .

Therefore, By = Ay e B (dimensionless centre temperature for slab 1)
ie, 8y = 0.84323 (dimensionless centre temperature for slab)
For dimensionless centre temperature of cylinder:

Fo:= a—f (Fourier number)
R
ie Fo = 2.5425 (this is > 0.2)
Bi = Ekﬂ (Biot number)
i.e. Bi = (1.18182 (Biot number)

A, and 4, have to be found from Table 7.1, against 8; = 0.182
06170 - 0.4417
10

Intepolating: A= 04417 + 8.2
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ie. Ay = 0.58545

1. -1 B

and, A= 10246 + ——(—]i%:*mlﬂ-&Z
ie. Ay = 1.04403

Therefore, By = Ao BT (dimensionless centre temperature for clylinder)
ie. 8y = 043677 (dimensionless centre temperature for cylinder)
ie. 8,(0, 7) = 043677

Therefore, [T(D’O’M‘] = {0.84323) (0.43677) = 0.3683

L-% short_cyl

Let T, 0, ) = Teenrre
ie. Teentre = 1o + 03683 (T, - T,) °C ...temperature af the centre
ie. Teentre = 98.928°C (temperature at the centre of short cylinder.)

Temperature at the centre of top surface of cylinder:
&0, L, T)shnrtfcyl = gwa]l(Lf 7) 'ecyl(ol 7)
Note that centre of top surface of the short cylinder is still at the centre of the long cylinder (r = 0) and at the outer
surface of intersecting plane wall (x = L). First, find the surface temperature of the plane wall: x = L = 0.075 m

Now, % =1 and, we use Eq. 7.24, a:
- T(x, 1) T, A,
Plane wall: 8x, ) = Twn-T _ Ay e’*"'“’-cos(‘—x Fo>02 (7.24, a)
T, -T, L
Fo:= 0.723 A;: = 0.55107 A;: = 1.05033 (for slab, already calculated.)

-2 .Fo _
Therefore, Ape cos{dy) = 0.71845
T, n-T.

ie. —tt 2 = 0.71845
ie T-T

80, L, T)short_cyl = &vall("—" 7} 'chl(of 7
[M_T] L, -6, 9 = (071845) (43677) = 3138

T' N Tﬂ short_cyl
Let T(O, L' T) = Tmpsurface_cemre

ie. Tropsurface_centre = L + (T = T,)-0.3138
ie Tyapsurtace_centre = 90.208°C {temperature at the centre of top surface.}

Heat transfer from the short cylinder:

We use Eq. 7.42:
Q [ L Q|- 2 (742
(o).~ (@) (2] )] e

Qpax = p-(ﬂ"RZ-Z-L)-CF-(T!- -T)] (maximum heat transfer = m-CP- AT)
Le. Qo = 200295 % 10° ] (maximum heat transfer)
Now, dimensionless heat transfer ratio /Q,, is determined for both the geometries from eqns. (7.27), or from
Grober’s charts, i.e. Figs. 7.7 (c) and 7.8 (c).
For the plane wall:

First, determine (J.,.:

Bi:=0341 F,:=0723 (already calculated)
A4y = 055107 8, = 0.84323
in(2
Plane wall: L _1.g, SL";L( 2) A7.27, a)
Thax 1
in(4
Therefore, 1- 8, —5—"}% = 0.19881
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ie. ( Q ) = 0.19881
1

max

For the long cylinder:

B;:= 0.18182 Fo := 2.5425 {already calculated)
A, = 0.58545 8, = 043677
Cylinder: L. 1- 2-90%11) {727, b)
max 1
Therefore, 1-2-8, %21) = 0.58168
1
ie ( Q J = 0.58168
max Jo

Now, apply Eq. 7.42:

(&), (&) (&) =)

ie. { Q } = 0.19881 + 0.58168 (1 — 0.19881)
Qmﬂ" total
ie. (i] = 0.66485
Qm‘"" totat
ie. Q = Quax- 066485 ] {define Q)
ie Q =266136 % 10°] (heat transferred from the short cylinder

during the time period of 120 s.)
Exercise: Work out this problem using the Heisler charts & Grober’s charts. '
To draw temperature-time history for centre of short cylinder:

Let us rewrite the values of 4; and A, for wall and cylinder as follows:
For infinite wall:

B;:= 0.34091
Therefore: Apan == 0.55107
and, A= 1.05033
For infinite cylinder
Bi := 0.18182
Therefore: A1 1= 0.58545
and, Aqii= 1.04403
Fourier number of wall as a function of 7: Fo, afl7) = %
. . . - aT
Fourier number of cylinder as a function of 7: Foa(g = =
We have for dimensionless centre temperatures:
T-T 3
Centre of plane wall: Gy = AL =g A .{7.25, a
Go0) T e ! (725, a)
Centre of long cylinder: 8y = LoT o _ A hr (7.25, b)
(r=0 A A '
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Then, centre temperature of the short cylinder is given as a function of time as follows:

gc_wa].l « Awall'e_fmlrﬂ"l“]
&, Fo_(1)
8 e A,e ™
T = | Teot T e A
Cmtﬁ'(r) gmnrre A 6(‘ _wall'gc,cy] ( )
T+ (T - L) Ot
Therefore, T enre(120) = 98.92705 (checks with earlier result)
7:= 0, 10, ..., 1000 {define a range variable 7, varying from
0 to 1000 s, with an increment of 10 s}
Centre temperature of short cylinder vs. time
260 i
240
220
200
180 \

Note:
@
(i)

(ii)
(iv)

(¥)
(vi)

160 \
Teontrel™ 140

120 \

100 \\
80 \
60 P
40 —
20

c 160 200 300 400 500 600 700 800 900 1000
1

FIGURE Example 7.16 Temperdfure#ime history for centre temperature of a short cylinder

Note from the graph that centre temperature reaches the ambient temperafure after about 600 s.
Eq. A is a piece of Mathcad programming, LHS defines the function T{9); on the RHS, there are 4 lines. First line
defines dimensionless centre temperature of infinite wall, next line defines dimensionless centre temperature of
long cylinder; third line defines dimensionless centre temperature of short cylinder and the last line defines the
temperature at the centre of short cylinder.
By defining Fourier number as a function of 7 we ensure that for each new 7, new values of Fo are calculated for
the wall as well as the cylinder.
Above graph is important, particularly when the problem is to find the time required for the centre of the short
cylinder to reach a given temperature. Then, construct the above graph and then read off the value of time
against the desired temperature. For example, from the graph, we see that time required for the centre tempera-
ture to reach 85°C is about 150 s.
We can also use the solve block to find accurately the time required for the centre temperature to reach 85°C, as
shown below.
In the above graph, a 7= 0, centre temperature is shown as 915.5°C and not 200°C; this error is due to the fact
that two one-term approximation solutions are multiplied together.

r:=100s (trial value of 7

Given

Teenire (9 = 85
Find(7) = 149.65588 s ..time required for the centre temperature to reach 85°C.

Interpolation with Mathcad:

In all the above examples, A; and .4, for given B; were found out by manual interpolation from Table 7.1. However, this
interpolation can be done easily and accurately in Mathcad, as follows: First, prepare Table 7.1 as an ASCII file, with the
name :Coeff.prn. Then, read this file into a matrix M by the command READPRN, as follows:

M := READPRN("Coeff.prn™)
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Then, extract the columns of this matrix to get Biot number and values of Aand A; for plane wall, cylinder and
sphere. Remember that columns of the matrix are generally numbered starting from zero. Matrix M has 7 columns: 0,
L..6. Oth column gives a vector of Biot numbers, 1st column gives 4, values for wall, Znd column gives A, values for
wall, 3rd and 4th columns give 4, and A; values for cylinder and, 5th and 6th columns give 4; and A, values for sphere,
respectively.

Biot = M  Ailwall .= M Alwall .= M*% Aleyl := M=%
Alcyl := M™** Alsph == M*™  Alsph = M<6”

Then, use the ‘linterp” function for linear interpolation. Here, each column must have the same number of values, If
there are two vectors X and Y giving a series of x and y values, for any given x-value, y-value is obtained by: linterp(X,
Y, x-value). This command performs the linear interpolation to give the y-value corresponding to desired x-value.

Let us define functions to quickly get A, and A, for wall, cylinder and sphere, for given Biot number:

A_Wall(Bi) := linterp(Biot, 4, wall, Bi) {defines A, for wall, for given Bi)
example: A_wall(0.341) = 0.55107
Ay_wall(Bi) == linterp (Biot, A, wall, B) {defines A, for wall, for given Bi)
example: Ay _wall(0.341) = 1.05033
A_cyl (Bi) := linterp(Biot, 4, cyl, Bi) (defines A, for cylinder, for given Bi)
example: A_cyl(0.18182) = 0.58513
Aj_cyl(Bi) == linterp(Biot, A, cyl, Bi) (defines Ay for cylinder, for given Bi)
example: A)_cyl{0.18182) = 1.04399
A_sph(Bi) := linterp (Biot, 4, sph, Bi) (defines Ay for sphere, for given Bi}
example: A,_sph(0.25) = 0.84005
Ay_sph(Bi} := linterp (Biot, A, sph, Bi) (defines A, for sphere, for given Bi.)
example: A;_sph(0.25) = 1.0736.

Compact Mathcad program to find the centre temperature of short cylinder:
Above problem can be solved in a single step by the following Mathcad program:

Bi _wall « E—E
k

h-R
Bi_cyl e —
A & A wall(Bi_wall)
Ay — Ay_wall(Bi_wall)
A ¢ Ay_cyl(Bi_cyl)
Agy— A _cyl(Bi_cyl)
Tcen[-re(L, R’ hr k: T;’J Ta: Z m = Fﬂwa]\ (—E.Z_T
L
oT
Foor 2
2
O art & Aare Avall Fowall
—qul-}'ucyl
BC,ryI L Acy]'f.’
i « Bc,wau 8

T, +(T,-T,)8

centre

c_cyl

centre

LHS of the above program defines the centre temperature of the short cylinder as a function of the variables I, R, #,
k, T, T, rand a RHS has 12 lines. First two lines define the Biot number for wall and cylinder, respectively. In 3rd and
4th lines, we get the 4, and A, for the wall using the interpolation functions defined earlier. In 5th and 6th lines 4; and
Ay are caleulated for the long cylinder. In 7th and 8th lines, Fourier numbers are calculated for wall and cylinder,
respectively. Centre temperatures of wall and long cylinder are calculated in lines 9 and 10, respectively. In 11th line,
dimensionless centre temperature of short cylinder is calculated as a product solution. Finally, the last line gives the
temperature at the centre of the short cylinder.

Advantage of this program is that it is quick and gives accurate calculation of the final result, i.e, the centre
temperature of the short cylinder. However, the disadvantage is that values calculated in the intermediate steps are not
available outside the program.
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For the above problem:

L=0075m R:=00Mm «:=33910%m/s

h=5000 W/(m’C)  r:=120s
Therefore, we get:
Teentre (L R, L &, T, T, 7, o) = 98.984°C

k=10 W/(mC) T,:=200°C T,:=40°C

{centre temperature of short cylinder.)

Compare this with the value of 98.93°C obtained earlier. Difference is due to the truncation errors crept in to the

solution in the earlier case.

7.9 Summary of Basic Equations

Basic relations derived in this chapter are summarised below in Table 7.4, for convenience and ready reference.

TABLE 7.4 Basic relations for transient condudtion

Relation Comments =
air 1 d7 Governing differential equation in Cartesian cords. for
@ P one-dimensional, transient cond. without heat genera-
tion.
g _1n-7, _ exp[—h"q'r if Bi < 0.1 Lumped system analysis,
91' Tr - Ts pcp .
Bi= ht, and L = 4
A
G T _ oo BiFo) 1B <01 Fo=2C - Fourier number, or relative time
8:‘ T - 7; C
eV
oA =1 Time constant {seconds)
dT(7)
Q(ry = m-C, et w Instantaneous heat transfer rate

Qry=hA(T() - T W

Qroi = mcp(T(r) - -rf)' J

Qo = Lomdr, J

Total heat transfer from time = 0 to r

CQay = m- Cp'(Ta -7

Maximumn heat transfer

T T b Temperature distribution when transient condition is
-1, _ exp(—a 1) + —B—.(1 — exp(-a- 1) induced by mixed B.C. (e.g. a slab with constant heat
-7, T-T, flux, g, at one surface and convection at the other sur-
fi
_ hA ace)
pv-C,
b= 94
pV-C,
T(n-T, _(b] Time required to attain a given temperature in the
L a above case

Steady state temperature for the above case
{obtained by pulting r = =, in Eq. 7.20

Contd.
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Comntd.

- : . One-term approximation solution for plane wall
&(x, 1) = Ten-T, _ Ay &% cos {/l,_x] Fo>02 PP P
T; - Ta L
- ; One-term approximation solution for long cylinder
&x, 1)y = Tno-T, _ A g aFe -JO(MJ ..Fo = 02. '
-7, R
A One-term approximation solution for a sphere
T o-T, s (1?]
A H T AR NS
a(x, 1) = -7, A€ AT .Fo=>02
A
PR Tk PR .o One-term approximation-centre temperalture for plane
°T -1, wall
0. = L-T, A g BFo One-lerm approximation-centre temperature for long
°T T T, 1 cylinder
8y = -;9 _Iﬂ —A.gFF One-term approximation-centre temperaiure for spheve
i~ la
Oi =1- ao-w Dimensionless heat transfer for large, plane wall
Max 1
Oi =1-2-6 J‘i'l‘) Dimensionless heat transfer for long cylinder
max 1
OO =1- 3-90-(MW—‘2J Dimensiontess heat transfer for a sphere
max 1
Seml-infinite slab-
Tix,7)-T, g X Dimensionless temperature distribution in a semi-infi-
- =er ] nite slab, surace temperature suddenly changed to T,
-7 2. Jar 0
2 x Temperature distribution in a semi-infinite slab, surface
Tx, o) = Ty + (T, - Ty) i l;‘ *7 axp(—u?)du temperature suddenly changed to T,
z do
Quuacs = k- A T~ Tf-)’ W Heat flow rate at the surface, for above case
T
. Total heat flow during time period 1 for the above case
Qo = 113 k- ATy - T,-)-J:, J
a

Semi-infinite slab:

Temperature distribution in a semi-infinite slab, surface is subjected to conslant heat flux, gy

2o q[ﬁ[zrﬂ

Mix, =7+

ex i
.4 P dat k

Contd.
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Conid.

Semi-infinite slab:

Temperature distribution in a semi-infinite slab, surface is subjected to convection at its surface:

% =T—eﬂ(2‘jg]—[exp[%{+b—j‘¥n [1 erf(z‘/_ h,/kﬁ]]

Multidimensional transient conduction:

Temperature distribution for a body formed by intersection of three bodies:

Hf solid 9’ system1 6,— system2 g; system3

Temperature distribution in fong, rectanguiar bar:

Txy.n-T,
[Tf—“—ulwt bar - waJl(X, 7)- 9Wa||(y| r)

Temperature distribution in shont cylinder:

[ﬂx%ﬂ—n

T_T ] = BuanlX T)- gcyl(rl 7}
P a short_cyl

Heat transfer in two-dimensional transient conduction:

()] @) (&),
Qmax tolal anx + omax 2 Omax 1]

Heat transfer in three-dimensional transient conduction:

() (@) (&) (e« () () )
=1 +|=—]|1- + 1= - [1-

Qmax total Qmax 1 Omax 2 Omax 1] Ornax 3 Qrmx t Qmax 2

7.10 Summary
In this chapter, we dealt with transient conduction, i.e. time dependent conduction, for three important, simple
geometries, namely, plane slab, long cylinder and sphere. In general, in transient conduction, temperature within
the body depends both on time and spatial coordinates. However, when the resistance for conduction within the
body is negligible as compared to the convective resistance at the surface of the body, analysis becomes simpler
and we adopt ‘lumped system analysis’, i.e. the whole body heats up or cools down as a ‘lump’, and the
temperature within the body is uniform, and is a function of time only. This is characterised by the value of non-
dimensional Biot number (B,) being less than 0.1. Whén Biot number is more than 0.1, results for temperature
distribution become more complicated and are obtained as infinite series. However, if the non-dimensional time,
Fourier number (Fo) is more than 0.2, it is found that considering only the first term of the infinite series and
neglecting rest of the terms, introduces an error of no more than 2%. Such an approximate solution is known as
‘one-term approximation’. Coefficients for use in the one-term approximation have been tabulated. Now, the
same results are presented in graphical form too, known as ‘Heisler charts’ for all the three geometries consid-
ered. However, these graphs are subject to reading errors and, whenever better accuracy is desired, relations for
one-term approximation should be used.

Dimensionless heat transfer during transient conduction may be obtained either from one- term
approximaion solutions, or from the ‘Grober’s charts’, also given for the three geometries.

‘Product solution” was explained for multidimensional transient conduction, when the temperature varia-
tion in a given body cannot be considered as one-dimensional, if the body in question could be considered as
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having been formed by the intersection of two or more one—chmensumai systems for which solutions are avail-
able.

Just as in the case of steady state conduction, in transient conduction too analytical methods have their
limitation, ie. difficulty in taking into account complex shape of the body, varying boundary conditions, or
accounting for varying thermophysical properties and heat transfer coefficients. In such cases, numerical
methods should be preferred since it is simple to handle such problems with numerical methods.

In the next chapter, we shall study numerical methods, as applied to steady state and transient conduction.

Questions
1. Differentiate between transient conduction and steady state conduction.
2. What do you understand by ‘lumped system analysis’? What are the underlying assumptions? What is the
criterion to apply lumped system analysis?
3. Explain the importance and physical significance of: Biot number and Fourier number, in transient conduction.

4. In which situation is lumped system analysis likely to be applicable—in water or in air? Why?
5. With usual notations, show that temperature distribution in a body during Newtonian heating or cooling is
given by:
T -T, -h-A-
(07, = exp hA7 W[V TU]
T.-T, pC,V
6. For transient conduction with negligible internal resistance, prove that:
8  T(r)-T, )
= ———— =exp(-Bi-Fo MU
o " T T p( ) M.U.]
7. Discuss the effect of Biot number and Fourier number on ‘time constant’ of a thermocouple. MU
8. What are Heisler charts? Explain their significance in solving transient conduction problems. S{V.TU]
9. What is meant by ‘one-term approximation sclution’? When is it applicable?
10. What is the use of Grober’s charts?
11. What do you mean by a ‘semi-infinite medium’? In what situations the assumption of semi-infinite medium

appropriate?
12. Explain the ‘product solution method’ for multidimensional transient conduction problems. What is the main
precaution to be taken while using this method?

Problems

Lumped system analysis:

1. A large copper slab, 5 cm thick at a uniform temperature of 350°C, suddenly has its surface temperat“ure lowered
to 30°C. Find the time at which the slab temperature becomes 100°C. Given: g = 9000 kg/ m?, €= 0.38 kJ/(kgK),
k =370 W/(mK), h = 100 W/(m?K). Also, find out the rate of cooling after 60 seconds.

2. An aluminium plate (p = 2707 1<g/rn3 C = 0.896 kKJ/(kgC), and k = 200 W/(mC)) of thickness 3 cm is at an
initial, uniform temperature of 40°C. Sudden]y, it is subjected to uniform heat flux g = 7000 W/m?, on one
surzféce while the other surface is exposed to an air stream at 20°C, with a heat transfer coefficient of k = 60 W/
{(m*C).

(i) Is lumped system analysis applicable to this case?
(ii) If yes, plot the temperature of the plate as a function of time, and
(iiiy What is the temperature of the plate in steady state?

3. A household electric iron has an aluminium base (o = 2700 kg/m C, = 0.896 k] /{kgC), and k = 200 W/(mC}),
which weighs 1.4 kg. Total area of iron is 0.05 m” and is heated with a 500 W heating element. Initially, the iron
is at ambient temperature of 20°C. How long will it take for the iron to reach 120°C once it is switched on? Take
heat transfer coefficient between iron and the ambient air as 18 W/ (m’K).

4. A copper ball of 8 cm diameter, initially at a uniform temperature of 350°C is suddenly placed in an
environment at 90°C. Heat transfer coefficient k, between the ball and the fluid is 100 W/(mK). For copper, ¢, =
0.383 KJ/(kgK), p= 8954 kg/ m?, k = 386 W/(mK). Calculate the time required for the ball to reach a temperature
of 150°C. Also, find the rate of cooling after 1 hr. Show graphically how the temperature of the sphere falls with
time.

5. A 12 mm diameter, mild steel sphere initially at a uniform temperature of 540°C is suddenly placed in an air
stream at 27°C, with a heat transfer coefficient # of 114 W/(m?C). For mild steel, ¢y = 0475 kJ/ (kgK). p = 7850
kg/m’®, k = 42.5 W/(mK), & = 0.043 m*/hr.
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(i} Calculate the time required for the bail to reach a temperature of 95°C.

(ii) Also, find the instantaneous heat transfer rate two minutes after the commencement of cooling.... [V.T.U]
A steel bar of diameter 6 cm is to be annealed by cooling it slowly from 850°C to 150°C in an ambient at 30°C.
Heat transfer coefficient between the surface of the bar and the ambient is 40 W/ (m*C), Determine the time
required for annealing. For steel, ¢, = 0.5 kJ/(kgK), g = 7800 kg/m® k = 50 W/{mK).

An egg with a mean diameter of 40 mm and initially at 20°C is placed in boiling water for 4 min and found to
be beiled to the consumer’s taste. For how long should a similar egg for the same consumer be boiled when
taken from a refrigerator at 5°C? Take the following properties for the egg: ¢, = 2.0 kJ/(kgK), p = 1200 kg/m® &
= 10 W/(mK).

Take value of heat transfer coefficient k = 100 W/(m*C). MUY
A thermocouple junction is in the form of 4 mm diameter sphere. Properties of the material are C, =420 ]/{kgK).
p = 8000 kg/ m’, k = 40W/ {mK), This junction, initially at 40°C, is inserted in a stream of hot air at 300°C, with
h = 45W/(m*K). Find:

(i) time constant of the thermocouple.

(i) thermocouple is taken out from hot air after 10 sec and is kept in still air at 30°C
Assuming heat transfer coefficient in air as 10 W/(m?K), find the temperature attained by the junction 20 sec
after removing from hot air stream. LIMU]
A thermocouple junction is in the form of 3 mun diameter sphere. Properties of the material are: C,= 400 ]/ {kgK),
r = 8600 kg/m®, k = 30W/(mK), This junction, is inserted in a gas stream to measure temperature, with a heat
transfer coefficient of k = 45 W/(m”K). How long will it take for the thermocouple to record 98% of the applied
temperature difference?

One-term approximate sclution and Heisler charts:

10.

11.

12.

13.

14.

A large plate of aluminium 5 m thick, is initially at 250°C, and it is exposed to convection with a fluid at 75°C
with a heat transfer coefficient of 500 W /{m?K). Calculate the temperature at a depth of 1.25 c¢m from one of the
faces, one minute after the plate is exposed to the fluid. What is the amount of heat removed from the plate
during this time?
Take themoghysical properties of aluminium as: ¢, = 0.9 kJ/(kgK), p = 2700 kg/m’, k = 215 W/(mK), a =
84 %1077 m*/s
A steel plate (&= 1.2 x 10° m%/s, k = 43 W/ (mC)), of thickness 2L = 8 cm, initiafly at a uniform temperature of
200°C is suddenly immersed in an oil bath at T, = 40°C. Convection heat transfer coefficient between the fluid
and the surface is 700 W/(m*C). How long will it take for the centre plane to cool to 90°C? What fraction of the
energy is removed during this time? :
Along, 15 em diameter cylindrical shaft made of stainless steel 304 (k = 14.9 W/(mC), p = 7900 kg/ m?, Cp =477
1/(kgC), and &= 3.95 x 107° m?/s), is initially at a temperature of 250°C. The shaft is then allowed to cool slowly
in an ambient at 40°C, with an average heat transfer coefficient of 85 W/(m’C).

(i} Determine the temperature at the centre of the shaft 15 min after the start of the cooling process.

(i) Determine the surface temperature at that time, and

(iii) Determine the heat lost per unit length of the shaft during this time period.
A solid brass sphere {(k = 60 W/(mC), &= 1.8 x 107 m?/s) of 18 cm diameter is initially at 150°C. It is cooled in
an environmemt at 20°C with a heat transfer coefficient of 600 W/(m?C).

(i) How long will it take for the centre of the sphere to reach 50°C?

{ii) Also, calculate the fraction of energy removed from the sphere during this time.
(iii) Draw the radial temperature profile after different time durations at intervals of 15 min.
A heavily insulated steel pipe line is 1 m in diameter and is 40 mm thick. Initially, the wall is at a uniform
temperature of —15°C. Suddenly, a hot fluid at 75°C enters the pipe with a heat transfer coefficient of 600
W/(m?C) between the fluid and the inner surface.

(i) Calculate the temperature on outer metal surface 10 min after the hot fluid is let in to the pipe.

(i) What is the heat flux from the fluid to the pipe at that time?, and

(iii} How much energy is transferred per metre length of pipe during this time interval?
[Hint: Since diameter >> thickness of pipe, the pipe wall may be considered as a plane slab. This is a plane slab
of thickness L, insulated at one surface; therefore, its insulated surface is equivalent to the mid-plane of a plane
slab of thickness 2L. (See Example 7.10} Find B; and Fo, and apply the one-termn approximation solution formulas
for temperature distibution and heat transferred. Heat flux at the inner surface is obtained by first calculating
the temperature T; at the-inner surface (i.e. at x/L = 1), and then, by Newton’s equation i.e. g = h(T.- T,). You
may also check your results by Heisler and Grober charts.]
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Semi-infinite medium: 'uncr[(dl
15 A thick aluminium slab, (¢ = 8.4 x 10° m’/s, k = 200 W/(mC)) initially at 250°C, has its surface temperature
suddenly lowered to and maintained 40°C. Tucs:
{i) How long will it take the temperature at a depth of 4 cm to reach 100°C? Hction
{ii) What is the heat flux at the surface at that time?
{iii) What is the total amount of heat removed from the slab per unit surface area till that time?
16. A thick concrete slab, {a= 7 x 107 m?/s, k = 1.37 W/(mC)) initially at 350°C, has its surface suddenly exposed
to a convection environment at 30°C, with a heat transfer coefficient of 100 W/{m>C). What is the temperature at is the
a depth of 8 em from the surface after a period of 1 hour?
17. A large block of steel (a = 14 x 107° m?/s, k = 45 W/(mC)) is initially at a uniform temperature of 20°C. ction,
Suddenly, its surface is exposed to a constant heat flux of 3.5 x 10° W/m?, Calculate the temperature at a depth
of 4 cm after a period of 2 min. g is

18. In areas where ambient temperature drops to sub-zero temperatures and remains so for prolonged periods,
freezing of water in underground pipelines is a major concern. It is of interest to know at what depth the water
pipes should be buried so that the water does not freeze. Uj
At a particular location, the soil is initially at a uniform temperature of 15°C and the soil is subjected to a sub-
zero temperature of —15°C continuously for 60 days.
(i) What is the minimum burial depth required to ensure that the water in the pipes does not freeze? (i.e. pipe

surface temperature should not fall below 0°C.) ]
{ii) Plot the temperature distributions in the soil for different times i.e. after 1 day, 1 week, etc.
Properties of soil may be taken as: a = 0.138 x 10 m?/s, p = 2050 kg/m’, k = 0.52 W/(mK), C, = 1840 J/kgK. |
19. A motor car weighing 1350 kg is moving at a speed, u = 50 km/h. 1t is stopped in 5 sec by 4 brakes with brake ]

bands of 250 cm” area each, pressing against steel drums. Assuming that the brake lining and the drum surfaces
are at the same temperature and that the heat is dissipated by flowing across the surface of the drums (assumed
f be very thick), find the maximum temperature rise.

[Hint: K.E. of the vehicle, [(1/2ma? is dissipated in a time of f = 5 sec. i.e. heat flow rate Q = {K.E)/f] is
known. Then, considering the drum surface as semi-infinite slab, apply Eq. 7.33 to get (T, - T))}.

Product solution:

20. A rectangular aluminium bar 6 cm x 3 cm (@ = 8.4 x 107 m?/s, k = 200 W/(mC), C, = 890 | /(kgC), p = 2700 kg/
m®, is initially at a uniform temperature of T; = 150°C. Suddenly the surfaces are subjected to convective cooling
into an ambient at T, = 20°C, with a convection heat transfer coefficient between the fluid and the surfaces being
250 W/(m?C).

(i) Determine the centre temperature of the bar after 1 min from the start of cooling
(i) What is the heat transferred per metre length of the bar during this period?

21. A short aluminium cylinder (k = 200 W/(mC), p = 2700 kg/m’, C, = 890 J/(kgC), and ar = 8.4 x 10° m’/s), of 8
cm diameter and height 4 cm s initially at a uniform temperature of T; = 200°C. The cylinder is subjected to
convective cooling with a fluid at 20°C, with an average heat transfer coefficient of 300 W/ (mzC).

(i) Determine the temperature at the centre of the cylinder 1 min after the start of the cooling process.
(ii) Determine the centre temperature of the top surface at that time, and
(iii} Determine the heat transfer from the cylinder during this time period.

22. A 20 cm long, 15 cm diameter aluminium block (& = 9.75 x 107° m?/s, k = 236 W/{mC), C, =896 [/(kgC), p =

2700 kg/m), is initially at a uniform temperature of 25°C. The block is heated in a furnace at 1100°C till the
centre temperature reaches 250°C. If the heat transfer coefficient on all surfaces of the block is 60 W/(m?Q),
determine how long the block should remain in the furnace.
[Hint: This short cylinder is considered as obtained by the intersection of an infinite plate and an infinite
cylinder. Solution involves trial and error method: For a range of times, calculate the centre temperature of the
short cylinder and plot a graph of time vs. centre temperature. From this graph, read the time corresponding to
a centre temperature of 250°C. While selecting the time range, be careful to see that the desired centre
temperature of 250°C is bracketed by the results obtained for the time range.]

23. A solid lead cylinder 0.5 m in diameter and 0.5 m in length, initially at a uniform temperature of 150°C, is
dropped into a medium at 20°C in which the heat transfer coefficient is 1200 W/ (m*C}). Plot the temperature-
time history of the centre of this cylinder.

FUNDAMENTALS OF HEAT AND MASS TRANSFER




Appendix

Mathcad functions for Transient conduction for Sab, Cylinder and Sphere ..One term approximation
(Fo > 0.2): )

1. Plane wall:

Values of A

A =15 (guess value)
Given
Ay-tan (4)) = Bi
Ay wan (BY) := Find (4,) ((A7.1)...Function to determine A; as a function of Bi)
Awan (40) = 1.5325 (Example)

Values of A;:

4-(4) an (B1))
Ay (B = - - - ((A7.2)...Function to defermine A
B et (B0 + 502 7 (B9) !
Ajan (100) = 1.2731 (Example)
Centre temp. of plane wall: '

To-T,
&= M'I""LFTL (T, = centre temp., T, = initial temp., T, = ambient temp.)
i~ la
Gyan(Bi, Fo) := Ay, (Bi)-exp (- ﬁqwau(Bi)z- Fo) {{A7.3)...Function to determine
centre temp, of plane wall)
a1, 3} = 0121 (Example)
Temp. at any location in a plane wall:
oo o TED=T
T -T, L

Bwall(Bi' Fo, xbyL) = A]wall(Bi)' exp - Aiwall(Bi)z'Fo)' COS(A’lwall(Bi)"x‘byL)
((A7.4).. Function to determine temp. at any location in plane wall)
Gl 3,0 =0121 (Example)
Heat transfer in a plane wall:

.where Q. =mCp(T,-T))
Qmax /?'1 e ’ l

sin (A‘l wall (BI))
’11 wall (Bl)

Exomple A7.). An Aluminium slab 10 cm thick, is initially at an uniform temperature of 600°C. It is suddenly immersed
in a liquid at 90°C and heat is transferred with a heat transfer coetf. of 1100 W/{m>.K). Determine;
(i) temperature at the centre line after 1 min.
{ii) temperature at the surface after 1 min.
(iii) total energy removed per unit area of the slab during this time period
Thermophysical data for Aluminium are: e = 8.85 x 10> m?%/s, k = 215 W/(m.K), p = 2700 kg/m’, C, = 900 ]/ (kg.K)
Solution.
Date:
L = 0.05 (heat thickness) &= 885.10° m%/s  k:=215 W/(mC)  p = 2700 kg/m®
C,=900])/(kgK) T;=600°C T,:=90°C  h:=1100 W(meC) t=60s
To calculate: the centre line temp., surface temp. and energy transferred per unit surface area of slab.

First check if lumped system analysis is applicable:

Qbmeax wan(Bi, Fo) == 1 — & ,,n(B;, Fo}-

Bi = hTL ...define Biot number
e, Bi = 0.256 ...Biot number.

It is noted that Biot number is > 0.}; so, lumped system analysis is not applicable. We will adopt one-term
approximation solution. ‘
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To find the centre line temp.:

Fourier number: Fo:= —c—;-; te. Fo = 2124 (> 0.2...thercfore, one term approx. is applicable)
Ty -1, . .
& = T-T (T, = centre temp., T, = initial temp., T, = ambient temp.)
i la
8y an (B, Fo) := Ay an(Bi}-exp (- Ay yan (Bi)z- Fo) (Function to defermine centre temp. of plane wall)
Therefore,
&uan{Bi, Fo) = 0.63
And, Te=063-(T,-Tp+T,
ie. Ty = 411.3°C (Centre line temp....Ans.)
Surface temperature:
At the surface, x/L=1.
Tix,0-T, x
#x, 1) = ——— L=—
(x, T) -1, xby T
We have:

8,an(Bi, Fo, xbyl) == A, an(Bi) exp {4y (Bi)*- Fo) cos (Ay,,u(B) - xbyl  (Function to determine femp.
af any location in plane wall)

Therefore,
8,,.1{Bi, Fo, 1) = 0.557 {af the surface, since x/L =1)
And, T:= 0557-(T,-T,)+T,
ie. T = 374.07°C (Surface temp...Ans.)
Amount of heat transferred, Q, in one minute:
-C, VAT, =T,
Q% - p—”AM = pCo@L)(Ty=T) I/m®  (max. heat trans. per unit area)
We have:
sin (4 Bi
By Omaxwan (B, F0) == 1= 6, (Bi, Fo)- —(IL"’"Q (Function to determine Q/Q,,,,)
A1 wart (BY)
ie. Quoy Drnae want (B, Fo) = 0.394
Therefore, QbyA = 0.394A[p-CP~(2 L) (T, - T
ie. QA = 4883107 |/ m? (heart tr. per unit area from the slab in one min...Ans.)
2. Infinite Cylinder:
Values of A;:
A =15 (guess value)
Given
A h(4) _ g
fo (A1)
Ay (Bi) = Find (4y) ((A7.6)...Function to determine A, as a function of Bi)
Alcyl(lﬂ) = 2.1795 (Example)

Values of A;:
2-Jy (A1gp (Bi))
Acyt (Bi)-(Jo (Ay g1 (BN + J1 (A1 cy1 (BI)?)
A p{10) = 1.5677 (Example)
Centre temp. of long cylinder:

Alcy](Bi) = ((A7.7)...Function to determine A;)

& = % (Ty = centre temp., T; = initial temp., T, = ambient temp.}
i~ la
By B, Fo) i= Ay y(Bi)-exp (-4 (BiY*-Fo) ((A7.8)...Function to determine centre
temp. of long cylinder)
85,1 (0.1, 18) = 0.031 (Example)
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Temp. at any radius in a long cylinder:

T(r,)-T, ,
B, 1) = o1, (r = any radius, ry = outeer radius of cyl)
5-T,
P to = —
by =
acyl (Bt Fo, rby r,l,‘ﬁ) = Alcy](Bi)'exp(_i’lcyl(Bi)z' Pa)']ﬁ(ilcyl(Bi)' rby r[))
8,:(0.1, 18, 0) = 0.031 {Example... (A7 9)...Function to determine temp. at any location)
Heat transfer in a long cylinder:
1 (4
L. 1-2-90-% (where Qua = mCp(T, - TH)
max 1

]1( leyl (Bt))
Alcyl (Bi)

Qby Qunae et (1, 1) = 0.797 (Example)
Exemgle A7.2. A long stainless steel shaft 10 cm in diameter 1s initially at an uniform temperature of 25°C. It is placed in
a furnace at 950°C and the heat transfer coeff. is 150 W/(mn’K).
(i) Calculate the time required for the axis temperature to reach 700 C
(i) what is the temperature at a radial position of 3 cm from the centre at that time?
(i} what is the amount of heat transferred per unit length during this time period?
For steel, o= 3.954 x 107 m2/s, k = 149 W/(m.C), p = 7900 kg/m’, C, =477 1/(kg0)
Solution,
Data:
.f_ =1m 7,:=005m @:=395410"m%/s k:=149W/(mC) (,=477]/(kgC) Ti = 25°C
= 980°C k=150 W/{m2.C) T, :=700°C (axis temp.) .
To calculate the time 7, temp. at a rad. of 3 cm, and amount of heat transferred during this period.
First check if lumped system analysis is applicable:

Qby Qmnax (Bl Fo) := 1 -2 Goq,l(Bl, Fo)- ({A7.10)...Function to determine Q7 Qua)

.
o

Bi:= Tz (define Biot number..for a cylinder, L, = (V/A) = r/2)

ie. Bi = 0.252 (Biot nunber.)

It is noted that Biot number is > 0.1; 50, lumped system analysis is not applicable. We will adopt one term
approximation solution.
To find the time reqd. for the centre line temp. to reach 700°C:
For one term approximation, now remember that Bi is defined as:

Bi:= b%’ (define Biot number}
ie. Bi = 0.503 {Biot number)
Fourier number: Fo = aﬂ-;’ (define Fourier number)

to
We have:
-7, L .

6y = ToT (T, = centre temp., T; = initial temp., T, = ambient temp.)

i~ ta
Oy (Bis Fo) = Ay (Bi)-exp(—zllcyl(Biz)-Fo) (Function to determine centre temp. of long cylinder)
-T,
ie. L=t _ oam007

i~ ta
i.e. the function 8 is equal to 0.27027. Let us calculate the fourier no. to satisfy this requirement. We use the Solve
block of Mathcad:

F,==02 (guess values)

[
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Given
bhey (Bi, Fo) = 0.27027
Find (Fo) = 1.592
i.e. Fourier number: F, = 1.592
Note: Observe the ease with which above calculation is perfomed with Mathcad.

: For
ie. Ti= ——
o
Le. r=1007-10%s (time reqd. for the centre line to reach 700°C...Ans.)
Temperature at a radial distance of 3 cm from centre:
At the required posotion, r/ry = 3/5.
ie. Ty Fo o= 0.6
We have:
Geyi (B, Fo, ry,rp) 1= Aya(Bi) -exp(llwl(Bi}Z-Fo)-Ig(zllcyl(Bi)-rbyrD) (Function to determine tenip.
at any location)
ie 81 (Bi, Fo, ry,1y) = 0.249
And,
r, D= Te.n-T (r = any radius, ry = outer radius of cyl.)
Ti 'Ta
ie. T:=0249-(T;-T) + T,
ie. T = 719.675°C {temp. at radial distance of 3 cm...Ans.)
Amount of heat transferred, (:
Now, Quax = P V- Cf-(Ta -T) (max. heat transfer possible)
ie. Qun = AT G 1) Cpr (T, ~ T (define Q)
ie. Qoax = 2.738:10° § (max. heat transfer)
We have:
. . J1{dy e (BE)) . .
Qbmeax ol (Bi, Fo) =1- 2-6(,wl(Br, Fo)- _/1—_ (Function to determine Q/Q...)
Teyl (BI)
ie. Qby Qrmaxcy1 (Bi, Fo) = 0.759
Therefore, Q = Qmax - 0.759
ie Q= 2.078-107 J (ammount of heat transferred when the centre
Iine reached 700°C, fe. in 1007 seconds... Ans.)
3. Spheres
Values of A;:
A =25 (guess value)
Given
1 A-cot(d) = Bi
A,lsph(Bi) = Find {4,) ((A7.11)...Function to determine A, as a function of Bi)
fllsph(l()) = 2.8363 (Example)

Values of A;:
4-(sin (’?'lsph (Bi)) - jh11-'.ph (Bi)-cos (4 sph {Bi))

Ay gpn(Bi) = 2 dror (B) —sin (2 A () ((A7.120)...Function to determine A;)
“Alsp - “A1sph g
Ay pn (100) = 1.999 {Example}
Centre temp, of Sphere:
Ty-T, i ,
&= T (Ty = centtre temp., T; = initial temp., T, = antbient temp.}
i~ *a
905},h(Bi, Fo) :== A, Sph(Bi}-exp(—,lhpgl(Bi}z-Fo) ((A7.13)...Function fo determine
_ centre temp. of sphere)
Bspn(0-02, 30) = 0167 {Example}
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Temp. at any location in a sphere:

T(r,7)-T, .
Gr, 1) = g (r = any radius, ry = oufer radius of cyl.)
Ti - Ta
r
Toylo = —
: T

Ay sph (B)-exp(= Ay g, (Bi) Foif 1y 1 =0

sin{A1spn (BI) -y 1)
(A1spn (Bi) 1y 1)

((A7.14)... Function to determine temp. at any location)

Hsph (0.02, 30, 0) = 0.167 (Example)
Heat transfer in a sphere:

Q _ 1- 360{Sin(/11) - 44 -cos(/?.})]

8,.n(Bi, Fo, ry 1) =

Ay gph (Bi)-exp(— Ay gpn, (B)*Fo). otherwise

(where Qu,, = mC(T, - T}
Qmax /113 max fARN] )

"8I (A1 gph (B)) ~ 1 gph (Bi)-cos(A gpp (Bi))
A1 spn (BiY’

((A7.15)...Function to determine Q/ Q.0
Qby Qmax sph(lf 1) = 0916 - (Emmple)
Example A7A. A stainless steel sphere, 10 mm in diameter is initially at an uniform temperature of 450°C. It is suddenly
placed in a water bath at 25°C and the heat transfer coeff. is 6000 W/ K).
(i} Calculate the time required for the centre temperature to reach 50 C
{ii) what is the temperature at the surface of the sphere at that time?
(iti) what is the amount of heat transferred during this time period?
For steel, r=3.954 x 10 m%/s, k = 149 W/(m.C), p = 7900 kg/m’, C, = 477 ] /(kg.C)
Salution. :
Data:
rg=0005m  @:=3954-10°m’/s  k:=149W/(mC) C,:=477]/(kgC)  pi=7900 kg/m’
T; = 450°C T, =25C B = 6000 W/ (m2.0) Ty := 50°C (centre temp.)
To calculate: the time 7, temp. at the surface, and amount of heat transferred during this period.
First check if lumped analysis is applicable:

QbyQ""ax oph (B, Fo) :=1 -3 %Sph(Bi: Fo)-

o
B0
Bi = TB (define Biot number.. for a sphere, L. = (V/A) = ry/3)
ie Bi = 0.671 (Bict number.)

It is noted that Biot number is > 0.1; so, lumped system analysis is not applicable. We will adopt one term
approximation solution,
To find the time required for the centre to reach 50°C:
For one term solution, now, remember that B is defined as:

Bi:= h.T’b (define Biot number)
ie. Bi=2013 (Biot number)
Fourier number: Fo = E«.;-

Fa
We have:
h-T, o .
&= T_T (Ty = centre temp. T, = initial temp., T, = ambient lemp.)
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Bpn(Bi, Fo) == Alsph(Bi)-exp(—/ySph(Bi)z- Fo) (Function to determine centre temp. at sphere)
TO - Ta
Tr' - Ta
i.e. the function &, is equal to 0.05882. Let us calculate the Fourier no. to satisfy this requirement. We use the Solve
block of Mathcad: .

= 0.05882

ie.

Fo =02 (guess number)
Given
& 5pn(Bi- Fo) = 0.05882
Find(Fo) = 0.78
i.e. Fourier number: Fo := 0.78
Note: Observe the ease with which above calculation is performed with Mathcad.

2
ie. T:= M
o
ie T=459325s (time reqd. for the centre temp. to reach 50°C... Ans.}
Temperature at the surface of sphere:
At the surface, rirg=1.
ie. Tylo = 1
We have:
-T,
8r, D= Tenn-1 {r = any radius, vy = outer radius of cyl.)
T.-T,
Avsph (BD)-exp(= Ay gy (BIY - FO)if rpy 19 =0
Bi, F = sin{4 Bi)-r,, 1y =0
Oupn(Bi F0 oy = | 4 (BO)-exp Ay g (B0 Fo) et B ST 020 iy i
(11 sph (BI”) rby o =0)
(Function to determine temp. at any location)
ie. B.on(Bi, Fo, I) = 0.026
‘And, T:=002-(T,-T)+T,
ie T = 36.05°C (temp. at the surface of sphere...Ans.)
Amount of heat transferred, :
Now, Quax = 2 V-G (T, - T} (max. heat transfer possible)
. 4}
ie. Qrax = £ (—E——O}-CP~(T; -TJ (define Q)
ie. Qmax = 838558 (max. heal transfer)
We have:
. ) sin{ A, gop (Bi) — Ay gon (Bi)-cos{Ay oy, (Bi))
oy Qomax sph (B, FO) i= 1 = 3+ Qg o (Bi, Fo)- L i P
A-]_ sph (BI)
(Function to determine Q/Q_ ..}
ie. by Qurax spn (Bi, Fo) = 0.962
Therefore, Q1= Q- 0.962
ie. Q= 806.693 ] (amount of heat transferred when the centre of

sphere reaches 50°C, i.e. in 4.932 seconds...Ans.)
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